
Software Engineering
Design Patterns

Lecture 8: Introduction and Singleton

Mahmoud El-Gayyar
elgayyar@ci.suez.edu.eg

Mahmoud El-Gayyar / Software Engineering 2

 Introduction to Design Patterns

 What is a Design Pattern?

 History of Design Patterns

 The Gang of Four

 Tangent: Unit Testing

 The Singleton Pattern

 Logger Example

 Lazy Instantiation

 Singleton vs. Static Variables

 Threading: Simple

Outline

Mahmoud El-Gayyar / Software Engineering 3

• A problem that someone has already solved.

• A model or design to use as a guide

• More formally: “A proven solution to a common

problem in a specified context."

Real World Examples

 Blueprint for a house

 Manufacturing

What is a Design Pattern?

Mahmoud El-Gayyar / Software Engineering 4

 Provides software developers a toolkit for handling

problems that have already been solved.

 Provides a vocabulary that can be used amongst

software developers.

 The Pattern Name itself helps establish a vocabulary

 Helps you think about how to solve a software problem.

Why Study Design Patterns?

Mahmoud El-Gayyar / Software Engineering 5

 Christopher Alexander (Civil Engineer) in 1977 wrote

 “Each pattern describes a problem which occurs over and

over again in our environment, and then describes the core

of the solution to that problem, in such a way that you can

use this solution a million times over, without ever doing it

the same way twice.”

History of Design Patterns

Mahmoud El-Gayyar / Software Engineering 6

 Each pattern has the same elements

 Pattern Name – helps develop a catalog of common problems

 Problem – describes when to apply the pattern. Describes

problem and its context.

 Solution – Elements that make up the design, their

relationships, responsibilities, and collaborations.

 Consequences – Results and trade-offs of applying the pattern

History (continued)

Mahmoud El-Gayyar / Software Engineering 7

 In 1995, the principles of Alexander applied to software

design and architecture. The result was the book:

“Design Patterns: Elements of Reusable Object-Oriented

Software” by Erich Gamma, Richard Helm, Ralph

Johnson, and John Vlissides.

Also commonly known as “The Gang of Four”.

History (continued)

Mahmoud El-Gayyar / Software Engineering 8

 Defines a Catalog of different design patterns.

 Three different types

 Creational – “creating objects in a manner suitable for the

situation”

 Structural – “ease the design by identifying a simple way to

realize relationships between entities”

 Behavioral – “common communication patterns between

objects”

The Gang of Four

Mahmoud El-Gayyar / Software Engineering 9

The Gang of Four: Pattern Catalog

Mahmoud El-Gayyar / Software Engineering 10

 Problems with design early on

 It is sometimes very hard to “see” a design pattern.

 Not all requirements are known.

 A design that is applicable early on becomes obsolete.

 Question: How do you moderate the fact that you won’t

have all of the design figured out?

Reality

Mahmoud El-Gayyar / Software Engineering 11

 create unit tests early in the development cycle

 it will be easier to refactor later on when more requirements are known.

 As a developer, you will have more confidence to make good design

adjustments.

 What happens if you do not have Unit Tests early on? These

statements may be heard:

 “ I am afraid to break something.”

 “I know the right thing to do….but I am not going to do it because the

system may become unstable.”

Tangent: Unit Testing

Mahmoud El-Gayyar / Software Engineering 12

 Unit Testing leads to easier Refactoring

 With easier Refactoring, you can take the risk of

applying Design Patterns, even if it means changing a

lot of code.

 Applying Design Patterns can improve the

maintainability and extendibility of your system.

Therefore…it pays to Unit Test!

Unit Testing (cont)

Mahmoud El-Gayyar / Software Engineering 13

 Make unit testing part of the project culture.

 When creating a schedule, include unit testing in your

estimates.

 Create your unit tests before you write the code.

 Helps you think about how software needs to be layered…it

may actually lead to more refactoring!

Unit Testing: Final Thoughts

Mahmoud El-Gayyar / Software Engineering 14

 “I just learned about Design Pattern XYZ. Let’s use it!”

 Reality: If you are going to use a Design Pattern, you

should have a reason to do so.

 The software requirements should really drive why you

are going to use (or not use) a Design Pattern.

Common Pitfall

Mahmoud El-Gayyar / Software Engineering 15

 Introduction to Design Patterns

 What is a Design Pattern?

 History of Design Patterns

 The Gang of Four

 Tangent: Unit Testing

 The Singleton Pattern

 Logger Example

 Lazy Instantiation

 Singleton vs. Static Variables

 Threading: Simple, Double-Checked, Eager Initialization

Outline

Mahmoud El-Gayyar / Software Engineering 16

What is wrong with this code?

 public class Logger

 {

 public Logger() { }

 public void LogMessage() {

 //Open File "log.txt"

 //Write Message

 //Close File

 }

 }

Example: Logger

Mahmoud El-Gayyar / Software Engineering 17

 Since there is an external Shared Resource (“log.txt”),

we want to closely control how we communicate with it.

 We shouldn’t have to create the Logger class every time

we want to access this Shared Resource. Is there any

reason to?

 We need ONE.

Example: Logger (cont)

Mahmoud El-Gayyar / Software Engineering 18

 GoF Definition: “The Singleton Pattern ensures a class

has only one instance, and provides a global point of

access to it.”

 Best Uses

 Logging

 Caches

 Registry Settings

 Access External Resources

 Printer, Device Driver, Database

Singleton

Mahmoud El-Gayyar / Software Engineering 19

public class Logger

{

 private Logger(){}

 private static Logger uniqueInstance;

 public static Logger getInstance()

 {

 if (uniqueInstance == null)

 uniqueInstance = new Logger();

 return uniqueInstance;

 }

}

Logger – as a Singleton

See Chapter 5 in

Head First Design

Pattern Book

Mahmoud El-Gayyar / Software Engineering 20

 Objects are only created when it is needed

 Helps control that we’ve created the Singleton just
once.

 If it is resource intensive to set up, we want to do it
once.

Lazy Instantiation

Mahmoud El-Gayyar / Software Engineering 21

 What if we had not created a Singleton for the Logger
class??

 Let’s pretend the Logger() constructor did a lot of setup.

In our main program file, we had this code:

public static Logger MyGlobalLogger = new Logger();

 All of the Logger setup will occur regardless if we ever
need to log or not.

Singleton vs. Static Variables

Mahmoud El-Gayyar / Software Engineering 22

public class Singleton

{

 private Singleton() {}

 private static Singleton uniqueInstance;

 public static Singleton getInstance()

 {

 if (uniqueInstance == null)

 uniqueInstance = new Singleton();

 return uniqueInstance;

 }

}

Threading

What would happen if two

different threads accessed

this line at the same time?

Mahmoud El-Gayyar / Software Engineering 23

public class Singleton

{

 private Singleton() {}

 private static Singleton uniqueInstance;

 public static synchronized Singleton getInstance()

 {

 if (uniqueInstance == null)

 uniqueInstance = new Singleton();

 return uniqueInstance;

 }

}

Simple Locking (Expensive)

Mahmoud El-Gayyar / Software Engineering 24

 Pattern Name – Singleton

 Problem – Ensures one instance of an object and
global access to it.

 Solution

 Hide the constructor

 Use static method to return one instance of the object

 Consequences

 Lazy Instantiation

 Threading

 Difficult unit testing

SUMMARY

