
Agile Software Development

Lecture 7: Software Testing

Mahmoud El-Gayyar
elgayyar@ci.suez.edu.eg

Slides are a modified version of the slides by

Prof. Kenneth M. Anderson

Testing Terminology

Types of Testing

Unit Testing

Black-Box Testing

White-Box Testing

 JUnit (Testing in Java)

Outline

 What is Testing?

Testing: Find the differences between the expected

behavior and the observed behavior.

Goal: Design tests that exercise defects in the system

and to reveal problems

 A successful test is a test that identifies faults

 Type of Errors

Fault (Bug): A design or coding mistake that may cause

abnormal component behavior.

Error: The system is in a state such that further

processing by the system will lead to a failure.

Failure: Any perceivable deviation of the observed

behavior from the specified behavior.

Human fault Error Failure

 Test Cases

Test Case: set of input data and expected results that

exercise a component with the purpose of causing

failures and detecting faults

Test cases can have relationships:

 T1: TestCase

T4: TestCase

T5: TestCase
 precedes

T2: TestCase

 precedes

T3: TestCase

 Test Stub and Drivers

Test Driver: simulates the part of the system that calls

the component under test (CUT)

Test Stub (or Mock): simulates component that are

called by the tested component

TestStub

TestStub

use

use

Not always a trivial task

 calls
 TestDriver aClass: MyClass

 Unit Testing:

Individual subsystem (modules)

Carried out by developers

Goal: Confirm that subsystems is correctly coded and carries out the

intended functionality

 Integration Testing:

Groups of subsystems (collection of classes) and eventually the entire

System to ensure that modules work together correctly

Carried out by developers or test team

Goal: Test the interface among the subsystem

Type of Testing

 System Testing:

The entire system

Carried out by test team (developers shouldn’t be involved)

Goal: Determine if the system meets the requirements (functional and

global)

Functional Testing: Test of functional requirements

Performance Testing: Test of non-functional requirements

Type of Testing

 Acceptance Tests

 performed by users to check that the delivered system meets their needs

 In large, custom projects, developers will be on-site to install system and

then respond to problems as they arise

Multi-Level Testing

 Black Box Testing

 Does the system behave as predicted by its specification

 White Box Testing

 Since, we have access to most of the code, lets make sure we are covering

all aspects of the code: statements, branches, …

 Gray Box Testing

 Having a bit of insight into the architecture of the system, does it behave

as predicted by its specification

Black-Box Testing

Black Box IN OUT

Test Data

 Ideally: All possible value

 Unmanagable! To expensive!
 => Equivalence classes

 Expected Data

 Actual Data

Comparison of expected

and actual data

 Black-Box Testing

Focus: I/O behavior. If for any given input we can predict the

output, then the module passes the test.

Do not deal with the internal aspects of the tested component

Almost always impossible to generate all possible inputs

Goal: Reduce number of test cases

Method: Equivalence Testing

Divide input conditions into equivalence classes

Choose test cases for each equivalence class. (Example: If an object is

supposed to accept a negative number, testing one negative number is

enough)

 Equivalence Classes

Square Root Function

Negative, Zero, Positive

Test data = {-16, 0, 25}, Expected Result = {4, 0, 5}

 In a computer store, the computer item can have a quantity

between -500 to +500. What are the equivalence classes?

Valid class: -500 <= QTY <= +500

Invalid class: QTY > +500

Invalid class: QTY < -500

Gray Box Testing

 Use knowledge of system’s architecture to create a more

complete set of black box tests

 Verifying logging information

 for each function is the system really updating all internal state correctly

 Data destined for other systems

 “Looking for Scraps”

 Is the system correctly cleaning up after itself temporary files, memory

leaks, data duplication/deletion

Mahmoud El-Gayyar / Software Engineering 14

Your time !!

Exercise : Black and Gray box

testing

 White-Box Testing

Focus on the internal structureof the component.

Goal: Each state in dynamic model of an object and each interaction

among the objects should be tested.

Four quality metrics for white-box testing:

 Statement Coverage

 Is each statement exercised(covered) by a test?

 Loop Coverage

 Is each loop body executed zero times, exactly once, and more than once (consecutively)?

 Branch Coverage

 Is each possible outcome of an decision covered?

 Path Coverage

 Is each possible path covered?

 Example: White-Box Testing

 findMean(File ScoreFile){

 float SumOfScores = 0.0;

 int NumberOfScores = 0;

 float Mean=0.0; float Score;

 Read(ScoreFile, Score);

 while !EOF(ScoreFile) {

 if (Score > 0.0) {

 SumOfScores = SumOfScores + Score;

 NumberOfScores++;

 }

 Read(ScoreFile, Score);

 }

 /* Compute the mean and print the result */

 if (NumberOfScores > 0) {

 Mean = SumOfScores / NumberOfScores;

 printf(“ The mean score is %f\n”, Mean);

 } else

 printf (“No scores found in file\n”);

 }

Example: White-Box Testing: Determine the paths

 findMean(File ScoreFile)

 { float SumOfScores = 0.0;

SumOfScores = SumOfScores + Score;
NumberOfScores++;

}

 Read(ScoreFile, Score);
}

/* Compute the mean and print the result */

printf (“No scores found in file\n”);

}

1

4

5

7 if (NumberOfScores > 0) {
 Mean = SumOfScores / NumberOfScores;
 printf(“ The mean score is %f\n”, Mean);

 } else

6

8

9

 int NumberOfScores = 0;
 float Mean=0.0; float Score;

 Read(ScoreFile, Score);

2 while !EOF(ScoreFile) {
 3 if (Score > 0.0) {

2

3

4 5

6

 7

8 9

Exit

Constructing the Logic Flow Diagram

 Start

 1

F

T F

T F

T

Finding Test Cases

 Start

4 5

3

 6

7

8 9

Exit

 1

2

b

e

 g

d

 f

i j

h

c

k l

a
(Covered by any data)

At least one value is

 + score

Empty data set

required

- score

Reached if either f or e is

reached

Total score >0.0 Total score <=0.0

13

Code Coverage Tools

 Tools that can track

code coverage

 metrics for you

(mostly just

statement and

branch coverage)

 Ex: EclEmma for Java

13

Test Automation

 It is important that your tests be automated

 More likely to be run

 More likely to catch problems as changes are made

 testing frameworks allow tests to be run with a single

command

 e.g. JUnit for JAVA (but there are lots of testing frameworks

out there)

 Test presentation !!!!!

 Testing in Java: JUnit

De facto standard Java framework for unit (object) testing

JUnit helps the programmer:

define and execute tests and test suites

write and debug code

integrate code and always be ready to release a working version

 JUnit is not included in Sun’s SDK, but almost all IDEs include it

 Junit: Terminology

A test fixture sets up the data (both objects and primitives) that

are needed to run tests

 Example: If you are testing code that updates an employee record, you need

an employee record to test it on

A test case tests the response of a single method to a particular

set of inputs

A test suite is a collection of test cases

 A Simple Example
Suppose you have a class Arithmetic with static methods

int multiply(int x,int y)

boolean isPositive(int x)
 import org.junit.*;

 Import static org.junit.Assert.*;

 public Class ArithmaticTest{

 @Test

 public void testMultiply(){

 assertEquals(4, Arithmetic.multiply(2,2));

 assertEquals(4,Arithmetic.multiply(3,-5));

 }

 @Test

 public void testIsPositive(){

 assertTrue(Arithmetic.isPositive(2));

 assertFalse(Arithmetic.isPositive(-2));

 assertFalse(Arithmetic.isPositive(0));

 }

 }

 Test Suites

You can define a suite of tests

 import org.junit.runner.RunWith;

 import org.junit.runners.Suite;

 import org.junit.runners.Suite.SuiteClasses;

 @RunWith(Suite.class)

 @Suite.SuiteClasses({

 FirstTest.class,

 SecondTest.class,

 ThirdTest.class

 })

 public Class AllTests(){ }

JUnit in Eclipse I

Bar is green if

all tests pass,
red otherwise

 Ran 10 of
the 10 tests

 No tests
failed, but...

Something unexpected
 happened in two tests

 This test passed

 Something is wrong

 Depending on your

 preferences, this
window might show
 only failed tests

This is how
 long the
 test took

JUnit in Eclipse II

Continuous Integration

 Since test automation is so critical, systems known as continuous

integration frameworks (CI) have emerged

 CI systems wrap version control, compilation, and testing into a

single repeatable process

Testing Terminology

Types of Testing

Multi-Level Testing

Black-Box Testing

Gray-Box Testing

White-Box Testing

Summary

 Test Automation and Continuous Integration

