
Agile Software Development

Lecture 4: Let’s Wrap up
Agile Fundamentals

Mahmoud El-Gayyar
elgayyar@ci.suez.edu.eg

Slides are a modified version of the slides by

Prof. Kenneth M. Anderson
Acknowledgment to Dr. Waleed Ghalwash

Mahmoud El-Gayyar / Software Engineering 2

 Software Crisis

 Agile Concepts

 SCRUM

 Extreme Programming

Outline

Mahmoud El-Gayyar / Software Engineering 3

Software Crisis
 a term used in the early days of computing science.

 used to describe the impact of rapid increases in computer

power and the complexity of the problems that could be

tackled.

 In essence, it refers to the difficulty of writing correct,

understandable, and verifiable computer programs.

63% OF SOFTWARE PROJECTS
NOT SUCCESSFUL

Software Success Rate

Mahmoud El-Gayyar / Software Engineering 5

Why software projects fail?
 Unrealistic Schedules

 Inappropriate Staffing

 Changing Requirements During Development

 Poor-Quality Work

 Believing in Magic

LEAN THINKING

Mahmoud El-Gayyar / Software Engineering 7

Lean Principles
 Eliminate waste

 Amplify learning

 Decide as late as possible (defer commitment)

 Deliver fast

 Empower the team

 Build quality in

 Optimize the whole

Mahmoud El-Gayyar / Software Engineering 8

Eliminate Waste
 Unclear requirements

 Unnecessary code and functionality

 Waiting in line (patch work)

 insufficient testing

 Empower the team

 Bureaucracy

 Task Switching

Mahmoud El-Gayyar / Software Engineering 9

Defer Commitment

 Apply the 80-20 rule to software development

 80% of the users use only 20% of requirement

 80% of the ROI is produced by 20% of the effort.

Mahmoud El-Gayyar / Software Engineering 10

Defer Commitment

SCRUM
(PROJECT MANAGEMENT)

Mahmoud El-Gayyar / Software Engineering 13

Mahmoud El-Gayyar / Software Engineering 14

eXtreme Programming
 XP takes commonsense software engineering principles and

practices to extreme levels

 For instance “Testing is good?”, then

 “We will test every day” and “We will write test cases before

we code”

 As Kent Beck says extreme programming takes certain

practices and “sets them at 11 (on a scale of 1 to 10)”

Mahmoud El-Gayyar / Software Engineering 15

XP Practices
 The best way to describe XP is by looking at some of its

practices

 There are fourteen standard practices

 Customer Team Member

 User Stories

 Short Cycles

 Acceptance Tests

 Pair Programming

Test-Driven Development

 Collective Ownership

Continuous Integration

 Sustainable Pace

 Open Workspace

 The Planning Game

 Simple Design

 Refactoring

 Metaphor

Mahmoud El-Gayyar / Software Engineering 16

1. Customer Team Member

 The “customer” is made a member of the

development team

 The customer is the person or group who defines and

prioritizes features

 A customer representative should be “in the same

room” or at most 100 feet away from the developers.

 “Release early; Release Often” delivers a working

system to the client organization; in between, the

customer representative provides continuous

feedback to the developers

Mahmoud El-Gayyar / Software Engineering 17

2. User Stories

 We need to have requirements

 XP requirements come in the form of

“user stories” or scenarios

 We need just enough detail to estimate

how long it might take to support this

story

 avoid too much detail, since the requirement

will most likely change; start at a high level,

deliver working functionality and iterate based

on explicit feedback

Mahmoud El-Gayyar / Software Engineering 18

3. Short Cycles

 An XP project delivers working software

every two weeks that addresses some of

the needs of the customer

 At the end of each iteration, the system is

demonstrated to the customer in order to get

feedback

Mahmoud El-Gayyar / Software Engineering 19

4. Acceptance Tests

 Details of a user story are captured in the

form of acceptance tests specified by the

customer

 The tests are written before a user story is

implemented

 They are written in a scripting language or testing

framework that allows them to be run

automatically and repeatedly

 These tests are run several times a day each time

the system is built

Mahmoud El-Gayyar / Software Engineering 20

5. Pair Programming

 Code is written by pairs of programmers

 working together at the same workstation

 One member (Driver) drives the keyboard and

writes code and test cases; the second watches

the code, looking for errors and possible

improvements (Navigator)

 The roles will switch between the two frequently

 Pair membership changes once per day; so that

each programmer works in two pairs each day

 this facilitates distribution of knowledge about the state of

the code throughout the entire team

Mahmoud El-Gayyar / Software Engineering 21

6. Test Driven Development

 All production code is written in order to

make failing test cases pass

 First, we write a test case that fails since the

required functionality has not yet been

implemented

 Then, we write the code that makes that test case

pass

 Iteration between writing tests and writing code

is very short; on the order of minutes

 As a result, a very complete set of test cases is

written for the system;

Mahmoud El-Gayyar / Software Engineering 22

7. Collective Ownership

 A pair has the right to check out/improve

ANY module

 Developers are never individually responsible

for a particular module or technology

Mahmoud El-Gayyar / Software Engineering 23

8. Continuous Integration

 Developers check in code and integrate it

into the larger system several times a day

 Entire system is built every day; e.g. if the

final result is a web site, they deploy the

web site on a test server.

 This avoids the problem of cutting

integration testing to “save time and

money”

Mahmoud El-Gayyar / Software Engineering 24

9. Sustainable Pace

 A software project is not a sprint; it’s a marathon

 A team that leaps off the starting line and races as fast as it can will

burn out long before the finish line

 The team must instead “run” at a sustainable pace

 An XP rule is that a team is not allowed to work overtime

 This is also stated as “40 hour work week”

Mahmoud El-Gayyar / Software Engineering 25

10. Open Workspace

 The team works together in an

open room

 There are tables with workstations

 There are whiteboards on the walls

for the team members to use for

status charts, task tracking, UML

diagrams, etc.

 “War room” environments can

double productivity

Mahmoud El-Gayyar / Software Engineering 26

11. The Planning Game

Mahmoud El-Gayyar / Software Engineering 27

12. Simple Design

 An XP team makes their designs as

simple and expressive as they can

be

 They narrow focus to current set of

stories and build the simplest system

that can handle those stories

Mahmoud El-Gayyar / Software Engineering 28

13. Refactoring

 XP teams fight “code rot” by

employing refactoring techniques

constantly

 By “constantly” we mean every

few hours versus “at the end of the

project”, “at the end of the

release”, or “at the end of the

iteration”

Mahmoud El-Gayyar / Software Engineering 29

14. Metaphor

 The big picture that ties the whole system together

 Vocabulary that crystallizes the design in a team member’s head

 Example : Windows Desktop

 Example: network traffic analyzer, every 30 minutes, system polled

dozens of network adapters and acquired monitoring data; Each

adaptor provides block of data composed of several variables

 Metaphor: A toaster toasting bread

 Data Block = “Slices”

 Network analyzer = “The Toaster”

 Slices are raw data “cooked” by the toaster

Mahmoud El-Gayyar / Software Engineering 30

Benefits of XP

Mahmoud El-Gayyar / Software Engineering 31

Criticisms of XP

 Code centered vs. Design centered

 Hurts when developing large systems

 Lack of design documentation

 Limits XP to small systems

 Producing readable code is hard

 Code is not good documentation

 Lack of transition support

 how do you switch from waterfall or other process?

Mahmoud El-Gayyar / Software Engineering 32

 Agile Development main ideas

 SCRUM

 eXtreme Programming

Key Points

