
Agile Software Development

Lecture 4: Let’s Wrap up
Agile Fundamentals

Mahmoud El-Gayyar
elgayyar@ci.suez.edu.eg

Slides are a modified version of the slides by

Prof. Kenneth M. Anderson
Acknowledgment to Dr. Waleed Ghalwash

Mahmoud El-Gayyar / Software Engineering 2

 Software Crisis

 Agile Concepts

 SCRUM

 Extreme Programming

Outline

Mahmoud El-Gayyar / Software Engineering 3

Software Crisis
 a term used in the early days of computing science.

 used to describe the impact of rapid increases in computer

power and the complexity of the problems that could be

tackled.

 In essence, it refers to the difficulty of writing correct,

understandable, and verifiable computer programs.

63% OF SOFTWARE PROJECTS
NOT SUCCESSFUL

Software Success Rate

Mahmoud El-Gayyar / Software Engineering 5

Why software projects fail?
 Unrealistic Schedules

 Inappropriate Staffing

 Changing Requirements During Development

 Poor-Quality Work

 Believing in Magic

LEAN THINKING

Mahmoud El-Gayyar / Software Engineering 7

Lean Principles
 Eliminate waste

 Amplify learning

 Decide as late as possible (defer commitment)

 Deliver fast

 Empower the team

 Build quality in

 Optimize the whole

Mahmoud El-Gayyar / Software Engineering 8

Eliminate Waste
 Unclear requirements

 Unnecessary code and functionality

 Waiting in line (patch work)

 insufficient testing

 Empower the team

 Bureaucracy

 Task Switching

Mahmoud El-Gayyar / Software Engineering 9

Defer Commitment

 Apply the 80-20 rule to software development

 80% of the users use only 20% of requirement

 80% of the ROI is produced by 20% of the effort.

Mahmoud El-Gayyar / Software Engineering 10

Defer Commitment

SCRUM
(PROJECT MANAGEMENT)

Mahmoud El-Gayyar / Software Engineering 13

Mahmoud El-Gayyar / Software Engineering 14

eXtreme Programming
 XP takes commonsense software engineering principles and

practices to extreme levels

 For instance “Testing is good?”, then

 “We will test every day” and “We will write test cases before

we code”

 As Kent Beck says extreme programming takes certain

practices and “sets them at 11 (on a scale of 1 to 10)”

Mahmoud El-Gayyar / Software Engineering 15

XP Practices
 The best way to describe XP is by looking at some of its

practices

 There are fourteen standard practices

 Customer Team Member

 User Stories

 Short Cycles

 Acceptance Tests

 Pair Programming

Test-Driven Development

 Collective Ownership

Continuous Integration

 Sustainable Pace

 Open Workspace

 The Planning Game

 Simple Design

 Refactoring

 Metaphor

Mahmoud El-Gayyar / Software Engineering 16

1. Customer Team Member

 The “customer” is made a member of the

development team

 The customer is the person or group who defines and

prioritizes features

 A customer representative should be “in the same

room” or at most 100 feet away from the developers.

 “Release early; Release Often” delivers a working

system to the client organization; in between, the

customer representative provides continuous

feedback to the developers

Mahmoud El-Gayyar / Software Engineering 17

2. User Stories

 We need to have requirements

 XP requirements come in the form of

“user stories” or scenarios

 We need just enough detail to estimate

how long it might take to support this

story

 avoid too much detail, since the requirement

will most likely change; start at a high level,

deliver working functionality and iterate based

on explicit feedback

Mahmoud El-Gayyar / Software Engineering 18

3. Short Cycles

 An XP project delivers working software

every two weeks that addresses some of

the needs of the customer

 At the end of each iteration, the system is

demonstrated to the customer in order to get

feedback

Mahmoud El-Gayyar / Software Engineering 19

4. Acceptance Tests

 Details of a user story are captured in the

form of acceptance tests specified by the

customer

 The tests are written before a user story is

implemented

 They are written in a scripting language or testing

framework that allows them to be run

automatically and repeatedly

 These tests are run several times a day each time

the system is built

Mahmoud El-Gayyar / Software Engineering 20

5. Pair Programming

 Code is written by pairs of programmers

 working together at the same workstation

 One member (Driver) drives the keyboard and

writes code and test cases; the second watches

the code, looking for errors and possible

improvements (Navigator)

 The roles will switch between the two frequently

 Pair membership changes once per day; so that

each programmer works in two pairs each day

 this facilitates distribution of knowledge about the state of

the code throughout the entire team

Mahmoud El-Gayyar / Software Engineering 21

6. Test Driven Development

 All production code is written in order to

make failing test cases pass

 First, we write a test case that fails since the

required functionality has not yet been

implemented

 Then, we write the code that makes that test case

pass

 Iteration between writing tests and writing code

is very short; on the order of minutes

 As a result, a very complete set of test cases is

written for the system;

Mahmoud El-Gayyar / Software Engineering 22

7. Collective Ownership

 A pair has the right to check out/improve

ANY module

 Developers are never individually responsible

for a particular module or technology

Mahmoud El-Gayyar / Software Engineering 23

8. Continuous Integration

 Developers check in code and integrate it

into the larger system several times a day

 Entire system is built every day; e.g. if the

final result is a web site, they deploy the

web site on a test server.

 This avoids the problem of cutting

integration testing to “save time and

money”

Mahmoud El-Gayyar / Software Engineering 24

9. Sustainable Pace

 A software project is not a sprint; it’s a marathon

 A team that leaps off the starting line and races as fast as it can will

burn out long before the finish line

 The team must instead “run” at a sustainable pace

 An XP rule is that a team is not allowed to work overtime

 This is also stated as “40 hour work week”

Mahmoud El-Gayyar / Software Engineering 25

10. Open Workspace

 The team works together in an

open room

 There are tables with workstations

 There are whiteboards on the walls

for the team members to use for

status charts, task tracking, UML

diagrams, etc.

 “War room” environments can

double productivity

Mahmoud El-Gayyar / Software Engineering 26

11. The Planning Game

Mahmoud El-Gayyar / Software Engineering 27

12. Simple Design

 An XP team makes their designs as

simple and expressive as they can

be

 They narrow focus to current set of

stories and build the simplest system

that can handle those stories

Mahmoud El-Gayyar / Software Engineering 28

13. Refactoring

 XP teams fight “code rot” by

employing refactoring techniques

constantly

 By “constantly” we mean every

few hours versus “at the end of the

project”, “at the end of the

release”, or “at the end of the

iteration”

Mahmoud El-Gayyar / Software Engineering 29

14. Metaphor

 The big picture that ties the whole system together

 Vocabulary that crystallizes the design in a team member’s head

 Example : Windows Desktop

 Example: network traffic analyzer, every 30 minutes, system polled

dozens of network adapters and acquired monitoring data; Each

adaptor provides block of data composed of several variables

 Metaphor: A toaster toasting bread

 Data Block = “Slices”

 Network analyzer = “The Toaster”

 Slices are raw data “cooked” by the toaster

Mahmoud El-Gayyar / Software Engineering 30

Benefits of XP

Mahmoud El-Gayyar / Software Engineering 31

Criticisms of XP

 Code centered vs. Design centered

 Hurts when developing large systems

 Lack of design documentation

 Limits XP to small systems

 Producing readable code is hard

 Code is not good documentation

 Lack of transition support

 how do you switch from waterfall or other process?

Mahmoud El-Gayyar / Software Engineering 32

 Agile Development main ideas

 SCRUM

 eXtreme Programming

Key Points

