
Agile Software Development

Lecture 5: Project Planning

Mahmoud El-Gayyar
elgayyar@ci.suez.edu.eg

Slides are a modified version of the slides by
Prof. Kenneth M. Anderson

Mahmoud El-Gayyar / Software Engineering 2

 Milestones

 The dangers of adding more people

 The Mythical Man-Month

 Velocity

 Burn down charts

 Big Board

Outline (Project Planning)

Mahmoud El-Gayyar / Software Engineering 3

Project Planning I
 what to do if your estimate is too big?

 In the example in the book, the answer was clear

 Our estimate: 489 days (~1.85 years of development time!!)

 Customer’s Ideal Deadline?

 90 days

Mahmoud El-Gayyar / Software Engineering 4

Project Planning II
 What to do?

 Scope the problem

 Focus on most critical functionality and see if customer is willing to focus

on that subset

 In general, “scope the problems” means drop features until the

remaining features can be completed by the original due date

 Who does the scoping?

 The customer

Mahmoud El-Gayyar / Software Engineering 5

Milestone 1.0
 In particular, we are attempting to define what features will

go into “milestone 1.0”

 Milestone 1.0 == first major release to the customer

 In iterations, you show software for feedback but do not generally

deploy the software for production use

 With milestones, you are delivering software that will go into

production use

Mahmoud El-Gayyar / Software Engineering 6

Milestone 1.0 Do’s and Don’ts

 Do balance functionality with customer impatience

 Help customer understand what can be done before the deadline

 Help them understand that features are being delayed not dropped

 Don’t get caught planning nice-to-haves

 You need to focus on what’s needed: mission critical fun.

 Don’t worry about length (yet)

 You’re trying to understand your customer’s priorities

Mahmoud El-Gayyar / Software Engineering 7

Soundness Check

 Once you have identified the features that need to go into Milestone 1.0,

recheck your estimate

 In the book, since you have less features, the new estimate comes to 273

days (3/4 of a year)

 You still have 90 days to complete the work

 And we are assuming a team size of 1 person

 In this situation, we would be forced to reprioritize with the customer

and cut functionality to the bone

 OR…

Mahmoud El-Gayyar / Software Engineering 8

Add More People I

 … we could add more people!

 Lets increase the team size to 3 people

 273 / 3 = 91 days of work and we have 90 days left

 That should do the trick assuming a few sleepless nights as the deadline

approaches, right?

 WRONG!

 First, we have 90 calendar days, not 90 work days!

 Recall that we get roughly 20 works days per month

 So a team of 3 can accomplish roughly 180 days worth of work over 90

calendar days ASSUMING ALL GOES WELL

Mahmoud El-Gayyar / Software Engineering 9

Add More People II

 Second, you can’t assume that the customer won’t change things

on you as you move forward

 Third, you can’t assume that the two new developers will be up to

speed on the project and ready to put full productive work days

into the project on day one

 With three people, we now have

 two people to train and get ready to work on the project

 three communication paths to manage (previously zero)

Mahmoud El-Gayyar / Software Engineering 10

Mythical Man-Month (I)

 Essays on Software Engineering is a book on software engineering

and project management by Fred Brooks, whose central theme is

that "adding manpower to a late software project makes it

later". It looks at the unit of the man-month

 sometimes used by management to schedule large projects

Mahmoud El-Gayyar / Software Engineering 11

But First: The Tar Pit

 Developing large systems is “sticky”

 Projects emerge from the tar pit with running systems

 But most missed goals, schedules, and budgets

 “No one thing seems to cause the difficulty. But the accumulation of

simultaneous and interacting factors brings slower and slower motion.”

 The analogy is meant to convey that

 It is hard to detect the nature of the problem(s) facing software

development

 Brooks begins by examining the basis of software development

 e.g. system programming

Mahmoud El-Gayyar / Software Engineering 12

What makes programming fun?

 Sheer joy of creation

 Pleasure of creating something useful to other people

 Creating (and solving) puzzles

 Life-Long Learning

Mahmoud El-Gayyar / Software Engineering 13

What’s not so fun about programming?

 You have to be perfect!

 You are rarely in complete control of the project

 Design is fun; debugging is just work

 Testing takes too long!

 The program may be obsolete when finished!

Mahmoud El-Gayyar / Software Engineering 14

Why are software project’s late?

 Estimating techniques are poorly developed

 Our techniques confuse effort with progress

 The Mythical Man-Month

 Since we are uncertain of our estimates, we don’t stick to them!

 Progress is poorly monitored!

 When slippage is recognized, we add people

 “Like adding gasoline to a fire!”

 Or may be Optimism

Mahmoud El-Gayyar / Software Engineering 15

Mythical Man-Month (II)

 The unit of the person-month implies that workers and months

are interchangeable.

 However, this is only true when a task can be partitioned among many

workers with no communication among them!

 Brooks points out that cost does indeed vary as the product of the

number of workers and the number of months. Progress does not!

 When a task is sequential, more effort has no effect on the schedule

 And, unfortunately, many tasks in software engineering have sequential

constraints. Especially debugging and system testing

Mahmoud El-Gayyar / Software Engineering 16

Mythical Man-Month (III)

 In addition, most tasks require communication among workers

 In a software dev. project, communication consists of

 training, and

 sharing information (intercommunication)

 training will effect effort at worst linearly

 (i.e. if you have to train N people individually, it will take N * trainingTime

minutes to train them)

 intercommunication adds n(n-1)/2 to the effort

 if each worker has to communicate with every other worker

Mahmoud El-Gayyar / Software Engineering 17

Mythical Man-Month (IV)

Mahmoud El-Gayyar / Software Engineering 18

Mythical Man-Month (V)

Mahmoud El-Gayyar / Software Engineering 19

Some Benefits

Mahmoud El-Gayyar / Software Engineering 20

Back to the Example

 With 3 developers, we start by assuming that they can produce

180 days of development effort

 You then negotiate with the customer until the estimate of all the

features in milestone 1.0 is less than 180 days

 You then create an iteration plan and get to work

 Keep your iterations short (30 calendar days, 20 work days)

 It helps you deal with change and keep you focused

 Keep your iterations balanced (new features, fixing bugs, etc.)

Mahmoud El-Gayyar / Software Engineering 21

And, now reality sets in

 We can’t necessarily assume 180 days of work from three

developers over three calendar months

 During the day there are constant interruptions that prevent

developers from remaining “in the flow”

 rather than 8 productive hours in a work day, you find that you only

achieve 5 hours (or less)

 To account for this, agile methods make use of a concept called

“team velocity” or “velocity”

 Velocity is a percentage: given X number of days, how much of that time

is productive? A default value is 0.7

Mahmoud El-Gayyar / Software Engineering 22

Realistic Estimate

 30 calendar days, 20 work days == 14 days of productive time !!!!

Project Estimate

Mahmoud El-Gayyar / Software Engineering 23

Example, cont.

 Now, that we know about velocity, we can use it to estimate how

many days of productive work we can achieve during each

iteration

 Since we have three iterations:

3 x 20 x 0.7 = 42

 number of developers x working days in iteration x velocity

3 x 42 = 126

Mahmoud El-Gayyar / Software Engineering 24

Example, cont.

 Went from: 3 people could do 270 days of work in 90 days

 To: 3 people could do 180 days of work in 90 days

 To (finally): 3 people could do 126 days of work in 90 days

 Assuming an overhead of 0.7

 Question: what should we do with our velocity if we add MORE

people to the project?

 How would you change velocity if we shifted to 4 people?

 or to 10 people?

Mahmoud El-Gayyar / Software Engineering 25

Your time !!

Exercise 4 : Be the customer

Mahmoud El-Gayyar / Software Engineering 26

Your time !!

Exercise 5 : Add them into

iterations (no velocity)

Mahmoud El-Gayyar / Software Engineering 27

Your time !!

Exercise 6 : Add them into

iterations (consider velocity)

Mahmoud El-Gayyar / Software Engineering 28

Managing Customers – I

 The customer will probably definitely not like the change from 273

days of work possible to 126

 Since it means a big reduction in what can be accomplished

Mahmoud El-Gayyar / Software Engineering 29

Managing Customers – II

 The customer will probably definitely not like the change from 273

days of work possible to 126

 Since it means a big reduction in what can be accomplished

 What to do?

 Add an iteration (if they will let you)

 Explain that overflow work is not lost, just postponed

 Be transparent about how you came up with your figures

 You now have an estimate that you can be confident in

Mahmoud El-Gayyar / Software Engineering 30

Your time !!

Exercise 7 : Who does what?

Mahmoud El-Gayyar / Software Engineering 31

User Stories and Tasks

 Each user story needs to be split into tasks

 Each task then needs an estimate associated with it

 The entire team should participate in breaking a user story into tasks;

planning poker should be used to assign estimates

 Example User Story: Create a Date in the System (Estimate: 11 days)

 Tasks

 Create a date class that contains events: 3 days

 Create user interface to create, view and edit a date: 5 days

 Create the schema for storing dates in a database: 3 days

 Create SQL scripts for adding/finding/updating dates: 2 days

 Total Task Time: 13 days! (Recommend, do estimation on tasks)

Mahmoud El-Gayyar / Software Engineering 32

Burn Down Chart - I

 Fortunately, the burn-down chart gives us a specific action item

whenever an estimate changes or work gets done

 Update the burn-down chart

 In the case of an estimate changing, calculate its impact on the

work remaining and plot your status

 In the book, the original estimate for the iteration was 43 days of productive

work; a 2 day increase in the first story pushes the amount of work left to 45

days

 and they spent a day working on task decomposition

 The following chart contains this info. plus more

Mahmoud El-Gayyar / Software Engineering 33

Burn Down Chart - II

Mahmoud El-Gayyar / Software Engineering 34

Burn Down Chart - III

Mahmoud El-Gayyar / Software Engineering 35

The Big Board

 Once you have a realistic estimate and an iteration plan based on

that estimate, you are ready to get started

 You will track your progress with a software development

dashboard

 A large whiteboard that is partitioned to help your team focus on what is

happening during the current iteration

 It is updated at least once per day during the stand up meeting

 But could be useful to update it more often than that

 It is a one-stop shop for getting a “big picture” view of the current

iteration

Mahmoud El-Gayyar / Software Engineering 36

Mahmoud El-Gayyar / Software Engineering 37

Mahmoud El-Gayyar / Software Engineering 38

Mahmoud El-Gayyar / Software Engineering 39

Don’t forget to add
developer name on

the task

Mahmoud El-Gayyar / Software Engineering 40

Mahmoud El-Gayyar / Software Engineering 41

Mahmoud El-Gayyar / Software Engineering 42

Mahmoud El-Gayyar / Software Engineering 43

Mahmoud El-Gayyar / Software Engineering 44

Mahmoud El-Gayyar / Software Engineering 45

Mahmoud El-Gayyar / Software Engineering 46

Mahmoud El-Gayyar / Software Engineering 47

Mahmoud El-Gayyar / Software Engineering 48

Your time !!

Exercise 8 : Correct your big

board

Mahmoud El-Gayyar / Software Engineering 49

Standup Meeting

 A daily meeting used to

 keep the team motivated and aware of progress (or not)

 keep your board up-to-date

 highlight problems early

 It should

 Track progress, update burn-down rate, update tasks,

 discuss what happened yesterday and plan today’s activities,

 bring up issues, and last between 5 and 15 minutes

 “Its so short, no one has time to sit down”

Mahmoud El-Gayyar / Software Engineering 50

 Factors that weigh into making an initial project

estimate

 Number of team members

 Team Velocity

 Mythical Man-Month

 Burn down charts

 The Big board

 Stand up meeting

Key Points

