Introduction to OS

Scheduling
MOS 2.4

Mahmoud El-Gayyar

elgayyar@ci.suez.edu.eg

& v

S f

| .{f. -

®
o

Mahmoud EI-Gayyar / Introduction to OS

® &\auﬁ

ITi Why Scheduling?

&,
Y l'ﬁ\f:

'\:\“S

N\

« We know Aowto switch the CPU among
processes or threads, but ...

« How do we decide which to choose next?

Mahmoud EI-Gayyar / Introduction to OS 2

ITi Role of Dispatcher vs. Scheduler

« Dispatcher
— Low-level mechanism
— Responsibility: context switch

« Scheduler
— High-level policy
— Responsibility: deciding which process to run

e Could have an allocator for CPU as well
— Parallel and distributed systems

Ready Queue
Admit N Dispatch Release
. T gl Processor -

Scheduling
Decision

Mahmoud EI-Gayyar / Introduction to OS 3

(@ | — 1 |
Long CPU burst \
Waiting for 1/0O
Short CPU burst \
) CFH—1 {1 1 ——_ 1 [——

Time
—_—

Bursts of CPU usage alternate with periods of 1/0 wait
— a CPU-bound (Compute-bound) process (a)
— an 1/O bound process (b)

Which process/thread should have preferred access to CPU?
Which one should have preferred access to 1/O or disk?

Mahmoud EI-Gayyar / Introduction to OS 4

ITi Scheduling Performance Criteria

time unit

Sl

LY

STy eN

'\:\“S
P

(Vasrza s

A W

Throughput — # of tasks that complete their execution per

o« Turnaround time — Total amount of time to execute one

process to its completion

« Waiting time — amount of time task has been waiting iIn

the ready queue

« Response time — amount of time from request submission

until first response is produced

Mahmoud EI-Gayyar / Introduction to OS

Iy

LY

'\:\“S

Scheduling — Policies

* Issues
— Falmess— don’t starve task
— Priorities — most important first
— Deadlines — task X must be done by time ¢
— Optimization— e.g. throughput, response time
» Reality — No universal scheduling policy
— Many models

— Determine what to optimize - metrics

— Select an appropriate one and adjust based on
experience

Sl

STy eN

f

N\

Mahmoud EI-Gayyar / Introduction to OS 6

ITi Non-preemptive Scheduling

* Once a process Is scheduled, it continues to
execute on the CPU, until
— It Is finished (terminates)
— It releases the CPU voluntarily

— It blocks aue to an event:
 //O Interrupts, walits for another process

Ready Queue
Admit N Dispatch
) gl Processor

Blocked Queue ,
Event Event Wait

_—
-

Release

-
-

|

Occurs

Mahmoud EI-Gayyar / Introduction to OS 7

ITi Preemptive Scheduling

« The operating system interrupts processes

— A scheduled process executes, until its time slice is used up, clock
interrupt returns control of CPU back to scheduler at end of time
slice

« Current process is suspended and placed in the Ready queue
« New process is selected from Ready queue and executed on CPU

— When a process with higher priority becomes ready

Ready Queue
Admit Dispatch
' al Processor

Timeout

Release
|

Blocked Queue _
Event Event Wait

Occurs -

Mahmoud EI-Gayyar / Introduction to OS 8

ITi Some task Scheduling Strategies

* First-Come, First-Served (FCFS)

 Shortest Job First (SJF)

— Variation: Shortest Remaining Time First
(SRTF)

« Round Robin (RR)
» Multilevel Queue scheduling

Mahmoud EI-Gayyar / Introduction to OS 9

Iy

Scheduling Policies
First Come, First Served (FCFS)

» Easy to implement
* Non-preemptive

— |.e., no task is moved from runningto ready
state in favor of another one

« Minimizes context switch overhead

PN

W,
eN

'\:\“S
PSiry

1, 2

Mahmoud EI-Gayyar / Introduction to OS

10

ITi Example: FCFS Scheduling

Task Burst Time
P, 24
P, 3
P, 3

 Suppose that tasks arrive in the order: 7, , P,, P,
* The time line for the schedule is:—

Py P, Ps

0 24 27 30

« Waiting time for P, =0; P, =24; P,= 27
« Average waliting time: (0 + 24 + 27)/3 =17

Mahmoud EI-Gayyar / Introduction to OS 11

Sl
ITi Example FCFS: Different Order

LY
pr

'\:\“S
PSiry

Suppose instead that the tasks arrive in the order
P,, Py, P,
The time line for the schedule becomes:

P, P Py

0 3 6 30
Waiting time for P, =6,P,=0.P;=3

Average waiting time: (6 +0+ 3)/3=3

Much better than previous case

Previous case exhibits the convoy effect:
— short tasks stuck behind long tasks

Mahmoud EI-Gayyar / Introduction to OS 12

Qé\
ITi FCFS Scheduling (summary)

: f’;

&
PSiry N

LY

'\:\“S

\)

 Short tasks penalized

— |l.e., once a longer task gets the CPU, it stays In
the way of a bunch of shorter task

« Appearance of random or unpredictable
behavior to users

* Does not help In real situations

Mahmoud EI-Gayyar / Introduction to OS 13

ITi Shortest-Job-First (SJF) Scheduling

For each task, identify duration (i.e., length) of its next CPU burst.
Use these lengths to schedule task with shortest burst

Two schemes:—
— Non-preemptive — once CPU given to the task, it is not preempted until it
completes its CPU burst
— Preemptive — if a new task arrives with CPU burst length less than remaining
time of current executing task, preempt.
» This scheme is known as the Shortest-Remaining-Time-First (SRTF)

SJF is provably optimal — gives minimum average waiting time for a given

set of task bursts

— Moving a short burst ahead of a long one reduces wait time of short task more than it
lengthens wait time of long one

Mahmoud EI-Gayyar / Introduction to OS 14

ITi Example of Non-Preemptive SJF

Task Arrival Time Burst Time

P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4
« SJF (non-preemptive)
P, P, P, P,
: I I 3I I I I7 I I I |12 I I |16

« Average waitingtime=(0+6+3+7)/4 =4

LY
: f":

'\:\“S
<€’°f/ry 2\

N

N\

Mahmoud EI-Gayyar / Introduction to OS

15

LY
pr

'\:\“S
sy

;)
ITi Example of Preemptive SJF

Task Arrival Time Burst Time
P, 0.0 {
P, 2.0 4
P, 1
4

4.0
P4 5-0
o SJF (preemptive)

P, | P, |Py | P, P, P,

0 5 4 5 7 11 16

« Average waiting time=(9+1+0+2)/4 =3

Mahmoud EI-Gayyar / Introduction to OS 16

Iy

Applications of SJF Scheduling

« Multiple desktop windows active at once
« Document editing

Background computation (e.g., Photoshop)

Print spooling & background printing

Sending & fetching e-mail

Calendar and appointment tracking

« Desktop word processing (at thread level)
 Keystroke input
* Display output
 Spell checker

LY

'\:\“S

1

Sl

a \&

STy eN

f

Mahmoud EI-Gayyar / Introduction to OS

17

PN

ITi Scheduling Policies — Round Robin %

W,
eN

'\:\“S
PSiry

* Round Robin (RR)

— FCFS with preemption based on time limits

— Ready tasks given a quantum of time when
scheduled

— Task runs until quantum expires or until it
blocks (whichever comes first)

— Suitable for interactive (timesharing) systems
— Setting quantum is critical for efficiency

Mahmoud EI-Gayyar / Introduction to OS 18

&\"%
Round Robin (continued) 2

LY

STy eN

'\:\“S
P

« Each task gets small unit of CPU time (guantum), usually
20-50 milliseconds.

— After quantum has elapsed, task is preempted and added to end of
ready gqueue.

« |If ntasks in ready queue and quantum = g, then each task
gets 1/nof CPU time in chunks of < g time units.
— No task waits more than (/-1)g time units.
« Performance

— glarge = equivalent to FCFS
— gsmall = may be overwhelmed by context switches

Mahmoud EI-Gayyar / Introduction to OS 19

Example of RR with Time Quantum = 20

Task Burst Time
P, 53
P, 17
P, 68
P, 24
* The time line is:
P, | P, | Py | P, | P, | Py | P, | Py | Psy| Py

0O 20 37 57

« Typically, higher average turnaround than SJF, but better response

77 97 117 121 134 154 162

1%

Z
@(&

Mahmoud EI-Gayyar / Introduction to OS

20

Iy

Comparison of RR and FCFS

Assume: 10 jobs each take 100 seconds — look at
when jobs complete

« FCFS —job 1: 100s, job 2: 200s, ... job 10:1000s
* RR

— 1 sec quantum

— Job 1: 991s, job 2 : 992s ...

* RR good for short jobs — worse for long jobs

LY

'\:\“S

8
PSiry N

N

N\

Mahmoud EI-Gayyar / Introduction to OS

21

ITi Application of Round Robin

L E
=3

PSiry

— \\&

* Time-sharing systems
 Fairsharing of limited resource
— Each user gets Z/nof CPU

» Useful where each user has one process to
schedule

— Very popular in 1970s, 1980s, and 1990s

* Not appropriate for desktop systems!

— One user, many processes and threads with
very different characteristics

Mahmoud EI-Gayyar / Introduction to OS 22

Iy

e A
Wit
e CP

Priority Scheduling

oriority number (integer) Is associated
n each task

J Is allocated to the task with the highest

priority (smallest integer = highest priority)
— Preemptive
— Non-preemptive

Mahmoud EI-Gayyar / Introduction to OS

23

Iy

Priority Scheduling

(Usually) preemptive

Tasks are given priorities and ranked

— Highest priority runs next

— May be done with multiple queues — multilevel/
SJF = priority scheduling where priority Is next
predicted CPU burst time

Recalculate priority — many algorithms

— E.g. increase priority of 1/O intensive jobs
— E.g. favor tasks in memory

Mahmoud EI-Gayyar / Introduction to OS

24

° P

ITi Priority Scheduling Issue #1

ik

&
PSiry N

LY

'\:\“S

* Problem: Starvation — low priority tasks
may never execute

« Solution: Aging — as time progresses,
Increase priority of waiting tasks

Mahmoud EI-Gayyar / Introduction to OS 25

ITi Priority Scheduling Issue #2

* Priority Inversion
— A has high priority, B has medium priority, C has
lowest priority
— Cacquires a resource that A needs to progress

— A attempts to get resource, fails and busy waits
« Cnever runs to release resource!

or

— A attempts to get resources, fails and blocks
« B (medium priority) enters system & hogs CPU
« (Cnever runs!
« Solution: Some systems increase the priority of a
process/task/job to match level of waliting task

L E
=3

PSiry

— \\&

Mahmoud EI-Gayyar / Introduction to OS 26

Iy

Multilevel Queue

Y
Ty eN

'\:\“S
Ly

N\

« Ready queue is partitioned into separate queues:
— foreground (interactive)
— background (batch)

 Each queue has its own scheduling algorithm

— foreground — RR
— background — FCFS

« Scheduling must be done between the queues

— Fixed priority scheaduling: (i.e., serve all from foreground then
from background). Possibility of starvation.

— Time slice — each queue gets a certain amount of CPU time which
It can schedule amongst its tasks; i.e., 80% to foreground in RR

— 20% to background in FCFS

Mahmoud EI-Gayyar / Introduction to OS 27

I Multilevel Queue Scheduling

highest priority

— system processes —
m— interactive processes m—
— interactive editing processes)y
— batch processes —
m— student processes m—
lowest priority

Mahmoud EI-Gayyar / Introduction to OS 28

Iy

&\aw 3

Multilevel Feedback Queue

LY

'\:\“S

A task can move between the various gueues
— Aging can be implemented this way

“Penalize processes that have been running longer”

— A process is downgraded according to CPU time consumed so

far

« Multilevel-feedback-queue scheduler defined by the
following parameters:

number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a task
method used to determine when to demote a task

method used to determine which queue a task will enter when
that task needs service

Mahmoud EI-Gayyar / Introduction to OS 29

|'|“ Example of Multilevel Feedback
! Queue ¢

pr :

Siry

» Three queues:
— Q, — RR with time quantum 8 milliseconds

— Q; — RR time quantum 16 milliseconds
— Q,—FCFS

« Scheduling

— New job enters queue Q, (FCFS). When it gains CPU,
job receives 8 milliseconds. If it does not finish in 8
milliseconds, job is moved to queue Q,.

— At Q, job is again served FCFS and receives 16
additional milliseconds. If it still does not complete, it
IS preempted and moved to queue Q..

Mahmoud EI-Gayyar / Introduction to OS 30

ITi Multilevel Feedback Queues

»>
>{ quantum = 8
r
4 quantum = 16
=)
—>r FCFS

o Effect:

— Processes trickle down the priority queues
— Short processes stop earlier in this descent
— Long processes will end in the lowest-priority queue

Mahmoud EI-Gayyar / Introduction to OS 31

ITi Thread Scheduling

« Local Scheduling — How the threads library
decides which user thread to run next within the

Process

o Global Scheauling — How the kernel decides
which kernel thread to run next

Process A Process B Process A Process B
Order in which l

threads run \
\

Y Y
2. Runtime
icks 2 —
thread | \ =
Moo o N

4
L1. Kernel picks a process \1. Kernel picks a thread E

Possible: A1, A2, A3, A1, A2, A3 Possible: A1, A2, A3, A1, A2, A3

Not possible: A1, B1, A2, B2, A3, B3 Also possible: A1, B1, A2, B2, A3, B3

Kernel picks process Kernel picks Thread

Mahmoud EI-Gayyar / Introduction to OS

32

o Q&\ﬂuﬂ%
ITi Scheduling — Examples

» Unix — multilevel - many policies and many policy
changes over time

» Linux — multilevel with 3 major levels
— Real-time FIFO
— Real-time round robin
— Timesharing

« Windows Vista — two-dimensional priority policy
— Process class priorities
 Real-time, high, above normal, normal, below normal, idle

— Thread priorities relative to class priorities.
« Time-critical, highest, ..., idle

Mahmoud EI-Gayyar / Introduction to OS 33

LY

f

STy eN

'\:\“S

; =
ITi Scheduling — Summary Bl

» General theme — what is the “best way” to run /7tasks on &
resources? (kK< n)

« Conflicting Objectives — no one “best way”
— Speed vs. fairness

 Incomplete knowledge
— E.g. —does user know how long a job will take

« Real world limitations
— E.g. context switching takes CPU time
— Job loads are unpredictable

« Bottom line — scheduling is hard!
— Know the models
— Adjust based upon system experience
— Dynamically adjust based on execution patterns

Mahmoud EI-Gayyar / Introduction to OS 34

1%
[\

i =
I|| Review s

* Round-robin schedulers normally maintain a list of all
runnable processes, with each process occurring exactly once
In the list. What would happen if a process occurred twice in
the list? Can you think of any reason for allowing this?

'\:\“S
PSiry

« Can a measure of whether a process is likely to be CPU bound
or 1/0O bound be determined by analyzing source code? How
can this be determined at run time?

Mahmoud EI-Gayyar / Introduction to OS 35

