
Mahmoud El-Gayyar / Introduction to OS 1

Introduction to OS

Scheduling
MOS 2.4

Mahmoud El-Gayyar
elgayyar@ci.suez.edu.eg

Mahmoud El-Gayyar / Introduction to OS 2

Why Scheduling?

• We know how to switch the CPU among

processes or threads, but …

• How do we decide which to choose next?

Mahmoud El-Gayyar / Introduction to OS 3

Role of Dispatcher vs. Scheduler

• Dispatcher

– Low-level mechanism

– Responsibility: context switch

• Scheduler

– High-level policy

– Responsibility: deciding which process to run

• Could have an allocator for CPU as well

– Parallel and distributed systems

Mahmoud El-Gayyar / Introduction to OS 4

• Bursts of CPU usage alternate with periods of I/O wait

– a CPU-bound (Compute-bound) process (a)

– an I/O bound process (b)

• Which process/thread should have preferred access to CPU?
Which one should have preferred access to I/O or disk?

Process Categorization

Mahmoud El-Gayyar / Introduction to OS 5

• Throughput – # of tasks that complete their execution per

time unit

• Turnaround time – Total amount of time to execute one

process to its completion

• Waiting time – amount of time task has been waiting in

the ready queue

• Response time – amount of time from request submission

until first response is produced

Scheduling Performance Criteria

Mahmoud El-Gayyar / Introduction to OS 6

Scheduling – Policies

• Issues

– Fairness – don’t starve task

– Priorities – most important first

– Deadlines – task X must be done by time t

– Optimization – e.g. throughput, response time

• Reality — No universal scheduling policy

– Many models

– Determine what to optimize - metrics

– Select an appropriate one and adjust based on

experience

Mahmoud El-Gayyar / Introduction to OS 7

Non-preemptive Scheduling

• Once a process is scheduled, it continues to

execute on the CPU, until

– it is finished (terminates)

– It releases the CPU voluntarily

– It blocks due to an event:

• I/O interrupts, waits for another process

Mahmoud El-Gayyar / Introduction to OS 8

Preemptive Scheduling

• The operating system interrupts processes
– A scheduled process executes, until its time slice is used up, clock

interrupt returns control of CPU back to scheduler at end of time

slice

• Current process is suspended and placed in the Ready queue

• New process is selected from Ready queue and executed on CPU

– When a process with higher priority becomes ready

Mahmoud El-Gayyar / Introduction to OS 9

• First-Come, First-Served (FCFS)

• Shortest Job First (SJF)

– Variation: Shortest Remaining Time First

(SRTF)

• Round Robin (RR)

• Multilevel Queue scheduling

Some task Scheduling Strategies

Mahmoud El-Gayyar / Introduction to OS 10

Scheduling Policies

 First Come, First Served (FCFS)

• Easy to implement

• Non-preemptive

– I.e., no task is moved from running to ready

state in favor of another one

• Minimizes context switch overhead

Mahmoud El-Gayyar / Introduction to OS 11

Example: FCFS Scheduling

 Task Burst Time

 P1 24

 P2 3

 P3 3

• Suppose that tasks arrive in the order: P1 , P2 , P3

• The time line for the schedule is:–

• Waiting time for P1 = 0; P2 = 24; P3 = 27

• Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 30 0

Mahmoud El-Gayyar / Introduction to OS 12

Example FCFS: Different Order

Suppose instead that the tasks arrive in the order

 P2 , P3 , P1

• The time line for the schedule becomes:

• Waiting time for P1 = 6; P2 = 0; P3 = 3

• Average waiting time: (6 + 0 + 3)/3 = 3

• Much better than previous case

• Previous case exhibits the convoy effect:
– short tasks stuck behind long tasks

P1 P3 P2

6 3 30 0

Mahmoud El-Gayyar / Introduction to OS 13

FCFS Scheduling (summary)

• Short tasks penalized

– I.e., once a longer task gets the CPU, it stays in

the way of a bunch of shorter task

• Appearance of random or unpredictable

behavior to users

• Does not help in real situations

Mahmoud El-Gayyar / Introduction to OS 14

Shortest-Job-First (SJF) Scheduling

• For each task, identify duration (i.e., length) of its next CPU burst.

• Use these lengths to schedule task with shortest burst

• Two schemes:–

– Non-preemptive – once CPU given to the task, it is not preempted until it

completes its CPU burst

– Preemptive – if a new task arrives with CPU burst length less than remaining

time of current executing task, preempt.

• This scheme is known as the Shortest-Remaining-Time-First (SRTF)

• SJF is provably optimal – gives minimum average waiting time for a given

set of task bursts

– Moving a short burst ahead of a long one reduces wait time of short task more than it

lengthens wait time of long one

Mahmoud El-Gayyar / Introduction to OS 15

 Task Arrival Time Burst Time

 P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4

• SJF (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of Non-Preemptive SJF

P1 P3 P2

7 3 16 0

P4

8 12

Mahmoud El-Gayyar / Introduction to OS 16

Example of Preemptive SJF

 Task Arrival Time Burst Time

 P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4

• SJF (preemptive)

• Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3 P2

4 2 11 0

P4

5 7

P2 P1

16

Mahmoud El-Gayyar / Introduction to OS 17

Applications of SJF Scheduling

• Multiple desktop windows active at once
• Document editing

• Background computation (e.g., Photoshop)

• Print spooling & background printing

• Sending & fetching e-mail

• Calendar and appointment tracking

• Desktop word processing (at thread level)
• Keystroke input

• Display output

• Spell checker

Mahmoud El-Gayyar / Introduction to OS 18

Scheduling Policies – Round Robin

• Round Robin (RR)

– FCFS with preemption based on time limits

– Ready tasks given a quantum of time when

scheduled

– Task runs until quantum expires or until it

blocks (whichever comes first)

– Suitable for interactive (timesharing) systems

– Setting quantum is critical for efficiency

Mahmoud El-Gayyar / Introduction to OS 19

Round Robin (continued)

• Each task gets small unit of CPU time (quantum), usually

20-50 milliseconds.

– After quantum has elapsed, task is preempted and added to end of

ready queue.

• If n tasks in ready queue and quantum = q, then each task

gets 1/n of CPU time in chunks of  q time units.

– No task waits more than (n-1)q time units.

• Performance

– q large  equivalent to FCFS

– q small  may be overwhelmed by context switches

Mahmoud El-Gayyar / Introduction to OS 20

Example of RR with Time Quantum = 20

 Task Burst Time

 P1 53

 P2 17

 P3 68

 P4 24

• The time line is:

• Typically, higher average turnaround than SJF, but better response

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Mahmoud El-Gayyar / Introduction to OS 21

Comparison of RR and FCFS

Assume: 10 jobs each take 100 seconds – look at
when jobs complete

• FCFS – job 1: 100s, job 2: 200s, … job 10:1000s

• RR

– 1 sec quantum

– Job 1: 991s, job 2 : 992s …

• RR good for short jobs – worse for long jobs

Mahmoud El-Gayyar / Introduction to OS 22

Application of Round Robin

• Time-sharing systems

• Fair sharing of limited resource
– Each user gets 1/n of CPU

• Useful where each user has one process to
schedule

– Very popular in 1970s, 1980s, and 1990s

• Not appropriate for desktop systems!

– One user, many processes and threads with
very different characteristics

Mahmoud El-Gayyar / Introduction to OS 23

Priority Scheduling

• A priority number (integer) is associated

with each task

• CPU is allocated to the task with the highest

priority (smallest integer  highest priority)

– Preemptive

– Non-preemptive

Mahmoud El-Gayyar / Introduction to OS 24

Priority Scheduling

• (Usually) preemptive

• Tasks are given priorities and ranked

– Highest priority runs next

– May be done with multiple queues – multilevel

• SJF  priority scheduling where priority is next
predicted CPU burst time

• Recalculate priority – many algorithms

– E.g. increase priority of I/O intensive jobs

– E.g. favor tasks in memory

Mahmoud El-Gayyar / Introduction to OS 25

Priority Scheduling Issue #1

• Problem: Starvation – low priority tasks

may never execute

• Solution: Aging – as time progresses,

increase priority of waiting tasks

Mahmoud El-Gayyar / Introduction to OS 26

Priority Scheduling Issue #2

• Priority inversion

– A has high priority, B has medium priority, C has
lowest priority

– C acquires a resource that A needs to progress

– A attempts to get resource, fails and busy waits

• C never runs to release resource!

or

– A attempts to get resources, fails and blocks

• B (medium priority) enters system & hogs CPU

• C never runs!

• Solution: Some systems increase the priority of a
process/task/job to match level of waiting task

Mahmoud El-Gayyar / Introduction to OS 27

Multilevel Queue

• Ready queue is partitioned into separate queues:

– foreground (interactive)

– background (batch)

• Each queue has its own scheduling algorithm

– foreground – RR

– background – FCFS

• Scheduling must be done between the queues

– Fixed priority scheduling: (i.e., serve all from foreground then
from background). Possibility of starvation.

– Time slice – each queue gets a certain amount of CPU time which
it can schedule amongst its tasks; i.e., 80% to foreground in RR

– 20% to background in FCFS

Mahmoud El-Gayyar / Introduction to OS 28

Multilevel Queue Scheduling

Mahmoud El-Gayyar / Introduction to OS 29

Multilevel Feedback Queue

• A task can move between the various queues

– Aging can be implemented this way

– “Penalize processes that have been running longer”

– A process is downgraded according to CPU time consumed so

far

• Multilevel-feedback-queue scheduler defined by the

following parameters:

– number of queues

– scheduling algorithms for each queue

– method used to determine when to upgrade a task

– method used to determine when to demote a task

– method used to determine which queue a task will enter when

that task needs service

Mahmoud El-Gayyar / Introduction to OS 30

Example of Multilevel Feedback

Queue

• Three queues:

– Q0 – RR with time quantum 8 milliseconds

– Q1 – RR time quantum 16 milliseconds

– Q2 – FCFS

• Scheduling

– New job enters queue Q0 (FCFS). When it gains CPU,
job receives 8 milliseconds. If it does not finish in 8
milliseconds, job is moved to queue Q1.

– At Q1 job is again served FCFS and receives 16
additional milliseconds. If it still does not complete, it
is preempted and moved to queue Q2.

Mahmoud El-Gayyar / Introduction to OS 31

Multilevel Feedback Queues

• Effect:
– Processes trickle down the priority queues

– Short processes stop earlier in this descent

– Long processes will end in the lowest-priority queue

Mahmoud El-Gayyar / Introduction to OS 32

Thread Scheduling

• Local Scheduling – How the threads library

decides which user thread to run next within the

process

• Global Scheduling – How the kernel decides

which kernel thread to run next

Kernel picks process Kernel picks Thread

Mahmoud El-Gayyar / Introduction to OS 33

Scheduling – Examples

• Unix – multilevel - many policies and many policy
changes over time

• Linux – multilevel with 3 major levels

– Real-time FIFO

– Real-time round robin

– Timesharing

• Windows Vista – two-dimensional priority policy

– Process class priorities

• Real-time, high, above normal, normal, below normal, idle

– Thread priorities relative to class priorities.

• Time-critical, highest, …, idle

Mahmoud El-Gayyar / Introduction to OS 34

Scheduling – Summary

• General theme – what is the “best way” to run n tasks on k
resources? (k < n)

• Conflicting Objectives – no one “best way”

– Speed vs. fairness

• Incomplete knowledge

– E.g. – does user know how long a job will take

• Real world limitations

– E.g. context switching takes CPU time

– Job loads are unpredictable

• Bottom line – scheduling is hard!

– Know the models

– Adjust based upon system experience

– Dynamically adjust based on execution patterns

Mahmoud El-Gayyar / Introduction to OS 35

Review

• Round-robin schedulers normally maintain a list of all

runnable processes, with each process occurring exactly once

in the list. What would happen if a process occurred twice in

the list? Can you think of any reason for allowing this?

• Can a measure of whether a process is likely to be CPU bound

or I/O bound be determined by analyzing source code? How

can this be determined at run time?

