
Mahmoud El-Gayyar / Introduction to OS 1

Introduction to OS

Synchronization
MOS 2.3

Mahmoud El-Gayyar
elgayyar@ci.suez.edu.eg

Mahmoud El-Gayyar / Introduction to OS 2

Challenge

• How can we help processes synchronize

with each other?

– E.g., how does one process “know” that another has

completed a particular action?

– E.g., how do separate processes “keep out of each

others’ way” with respect to some shared resource

– E.g., how do process share the load of particularly long

computations

Mahmoud El-Gayyar / Introduction to OS 3

Definition – Atomic Operation

• An operation that either happens entirely or

not at all

– No partial result is visible or apparent

– Appears to be non-interruptible

• If two atomic operations happen “at the

same time”

– Effect is as if one is first and the other is second

– (Usually) don’t know which is which

Mahmoud El-Gayyar / Introduction to OS 4

Hardware Atomic Operations

• On (nearly) all computers, reading and writing
operations of machine words can be considered as
atomic

– Non-interruptible

– It either happens or it doesn’t

– Not in conflict with any other operation

• When two attempts to read or write the same data,
one is first and the other is second
– Don’t know which is which!

• No other guarantees
– (unless we take extraordinary measures)

Mahmoud El-Gayyar / Introduction to OS 5

Race Condition

The final value is 1 instead

of the expected result of 2.
Mutual Exclusion.

C
ri

ti
ca

l
R

eg
io

n

Can the same problem occur among processes?

Mahmoud El-Gayyar / Introduction to OS 6

Definitions

• Definition: race condition
– When two or more concurrent activities are trying to do

something with the same variable resulting in different
values

– Random outcome

• Critical Region (aka critical section)
– One or more fragments of code that operate on the

same data, such that at most one activity at a time may
be permitted to execute anywhere in that set of
fragments.

Mahmoud El-Gayyar / Introduction to OS 7

Critical Section

process ()
{

entry_protocol()

critical_section()
exit_protocol()

}

• Entry protocol:

– Process requests entry to critical section

– Process has to communicate that it entered critical
section

• Exit protocol:

– process communicates to other processes that it
leaves critical section

Mahmoud El-Gayyar / Introduction to OS 8

Synchronization – Critical Regions

Mahmoud El-Gayyar / Introduction to OS 9

Deadlock and Starvation

• Enforcing mutual exclusion creates two new
problems
– Deadlocks

• Processes wait forever for each other to free resources

– Starvation
• A process waits forever to be allowed to enter its

critical section

• Implementing mutual exclusion has to
account for these problems

Mahmoud El-Gayyar / Introduction to OS 10

Class Discussion

• How do we keep multiple computations

from being in a critical region at the same

time?

Mahmoud El-Gayyar / Introduction to OS 11

Requirements – Controlling Access to a

Critical Section

1. Mutual exclusion: Only one computation in

critical section at a time

2. No assumption about speeds or number of CPUs

3. No process running outside its critical region

may block other processes.

4. No starvation — No process should have to

wait forever to enter its critical region.

Mahmoud El-Gayyar / Introduction to OS 12

Possible ways to protect critical section

• Software

– Use shared lock variables to control access to critical
section

– Busy waiting

• Hardware

– Disable interrupts

– Processor provides special instructions

• Higher operating system constructs

– Semaphores, Monitor, message passing

– Involvement of scheduler, processes are suspended

Mahmoud El-Gayyar / Introduction to OS 13

Software Solutions for Mutual
Exclusion

Solving the Critical Section Problem

Mahmoud El-Gayyar / Introduction to OS 14

Lock Variables

• Use of shared memory for inter-process communication

• Shared variable “lock”

• Used to indicate whether one of the competing processes have

entered critical section
– If lock == 0 (FALSE), then lock is not set

– If lock == 1 (TRUE), then lock is set

• All processes that compete for a shared resource also share this

local variable
– A process checks the lock

– If lock not set, process sets the lock and enters critical section

– Otherwise, waits

• Problem:
– Lock variable is itself a shared resource, race condition can occur

Mahmoud El-Gayyar / Introduction to OS 15

lock = FALSE;

 process1()

 {

 while(lock == TRUE){

 // wait

 }

 lock = TRUE;

 critical_actions();

 lock = FALSE;

 }

Example: Shared Lock

process1()

{

 while(lock == TRUE){

 // wait

 }

 lock = TRUE;

 critical_actions();

 lock = FALSE;

}

Initialisation:

 Lock

 Shared
 Resoure

Context

switch

Both processes are now in their critical sections !

Mahmoud El-Gayyar / Introduction to OS 16

Busy Waiting

• Also called “polling” or “spinning”

• A process continuously evaluates and consumes

CPU cycles without any progress.

• A lock that uses busy waiting is called a spin

lock.

Mahmoud El-Gayyar / Introduction to OS 17

Strict Alternation

• Busy-waiting Strategy

• Strict alternation between two processes

• Use a “token” as a shared variable:

• Value is process ID

• indicates which process is the next to enter critical section, set by previous process

• For two processes P0 and P1 (can be extended to n processes)

• Entry to critical section

• Process Pi busy-waits until token == i (its own process ID)

• Exit from critical section

• Process Pi sets token to next process ID

Mahmoud El-Gayyar / Introduction to OS 18

Example: Strict Alternation

int turn=0 ;

while(TRUE){

 while(turn != 0){

 // wait

 }

 Critical_Section

 turn = 1;

 Non_Critical_Section

 ...

}

while(TRUE){

 while(turn != 1){

 // wait

 }

 Critical_Section

 turn = 0;

 Non_Critical_Section

 ...

}

Process 0 Process 1

• Mutual exclusion guaranteed

• Lifeness / Progression problem:
 Process not in critical region blocks another process (violates condition 3)

 taking turns is not a good idea when one of the processes is much slower

than the other

Mahmoud El-Gayyar / Introduction to OS 19

Use an Array of Flags

• Mutual exclusion guaranteed
• Problem: Deadlock may occur due to context switch

while(TRUE){

 flag[0] = TRUE;

 while(flag[1]==TRUE){

 // wait

 }

 Critical_Section

 flag[0] = FALSE;

 Non_Critical_Section

 ...

}

while(TRUE){

 flag[1] = TRUE;

 while(flag[0]==TRUE){

 // wait

 }

 Critical_Section

 flag[1] = FALSE;

 Non_Critical_Section

 ...

}

Process 0 Process 1

boolean flag[2]; Global Variables flag[0]=FALSE

flag[1]=FALSE

Context

switch

Mahmoud El-Gayyar / Introduction to OS 20

Peterson’s Algorithm

• Combines strict alteration with
flags for indicating interest in
entering critical section

• Non-Atomic Locking: works
even if there is a race condition

– Is limited to two processes

– Uses two shared data items for

int turn ;

boolean flag[2] ;

Indicates, which of the two
processes is allowed to enter

Indicates, which of the two

processes is ready to enter (both
can be ready at the same time)

{

j = 1 –i ;

flag[i] = TRUE ;

turn = j ;

while (flag[j] &&

 turn == j) ;

 critical_section() ;

flag[i] = FALSE ;

 remainder_section() ;

process (i)

}

Mahmoud El-Gayyar / Introduction to OS 21

Peterson’s Algorithm

boolean flag[2];

int turn;

while(TRUE) {

 flag[0] = TRUE;

 turn = 1

 while(flag[1] == TRUE &&

 turn == 1){

 // wait

 }

 Critical_Section

 flag[0] = FALSE;

 Non_Critical_Section

 ...

}

Global Variables

 Process 0

flag[0]=FALSE

flag[1]=FALSE

turn = 0; // or 1

 Process 1

while(TRUE) {

 flag[1] = TRUE;

 turn = 0

 while(flag[0] == TRUE &&

 turn == 0){

 // wait

 }

 Critical_Section

 flag[1] = FALSE;

 Non_Critical_Section

 ...

}

Mahmoud El-Gayyar / Introduction to OS 22

Peterson’s Algorithm – cont..

• Does it work if both processes enter almost

simultaneously?

• Both will set flag[processID] = TRUE

• Both try to write the variable turn

• This is a race condition: if process 1 is the last to write, it wins

race

• Example: Process 1 wins the race, turn = 1

• Both processes arrive at the while loop

• Process 0 immediately continues(as turn == 1)

• Process 1 is waiting in the whileloop (as turn == 1 and flag[0] = TRUE)

• The race condition is not a problem

Mahmoud El-Gayyar / Introduction to OS 23

Peterson’s Algorithm – cont..

• Peterson’s Algorithm

• Is a non-atomic locking algorithm

• Mutual Exclusion is preserved

• Even if flag[i] == flag[j] == TRUE (both processes are ready), the

variable turn can only be either i or j (only one of them can enter

critical section)

• Progress and Bounded Waiting

• Progress is guaranteed: If a process indicates interest to enter critical

section, it will gain access after the other process is finished

• Problems
• Still busy-waiting solution

• Solution for only two processes, can be extended to n. processes, does
not work for unknown number of processes

Mahmoud El-Gayyar / Introduction to OS 24

Possible ways to protect critical section

• Software

– Use shared lock variables to control access to critical
section

– Busy waiting

• Hardware

– Disable interrupts

– Processor provides special instructions

• Higher operating system constructs

– Semaphores, Monitor, message passing

– Involvement of scheduler, processes are suspended

Mahmoud El-Gayyar / Introduction to OS 25

Hardware Solutions for Mutual
Exclusion

Solving the Critical Section Problem

Mahmoud El-Gayyar / Introduction to OS 26

Mutual Exclusion: Disable Interrupts

• Interrupt Disabling
– A process cannot be interrupted until it enables

interrupts again

– Therefore, guarantees mutual exclusion on a
uniprocessor system

• Disadvantages
– Does not work on a multiprocessor architecture

– It is unwise to give user processes the power to turn off
interrupts, what about disabling it and not turning it on
again?!!!

Mahmoud El-Gayyar / Introduction to OS 27

The TSL (Test & Set Lock) Instruction

• The CPU executing the TSL instruction locks the
memory bus to prohibit other CPUs from
accessing memory until it is done.

• Disadvantages
– Again is based on a busy-waiting solution.

– Priority inversion problem:
• Consider a computer with two processes, H, with high priority,

and L, with low priority.

• The scheduling rules are such that H is run whenever it is in
ready state.

• At a certain moment, with L in its critical region, H becomes
ready to run (e.g., an I/O operation completes). H now begins
busy waiting,

• but since L is never scheduled while H is running, L never gets
the chance to leave its critical region, so H loops forever.

Mahmoud El-Gayyar / Introduction to OS 28

Possible ways to protect critical section

• Software

– Use shared lock variables to control access to critical
section

– Busy waiting

• Hardware

– Disable interrupts

– Processor provides special instructions

• Higher operating system constructs

– Semaphores, Monitor, message passing

– Involvement of scheduler, processes are suspended

Mahmoud El-Gayyar / Introduction to OS 29

OS Constructs Solutions for
Mutual Exclusion

Solving the Critical Section Problem

Mahmoud El-Gayyar / Introduction to OS 30

Semaphores

Solving the Critical Section Problem

Mahmoud El-Gayyar / Introduction to OS 31

 Semaphores

• Synchronization mechanism

• Two or more processes can
communicate by means of
simple signals

– One process can be forced to
wait for a signal from other
processes

• Semaphore acts as a barrier,
makes processes wait

process ()
{

 wait(S)

 critical_section() ;

 signal(S)

 remainder_section() ;

}

Mahmoud El-Gayyar / Introduction to OS 32

 Semaphores cont…

process ()
{

 wait(S)

 critical_section() ;

signal(S)

 remainder_section() ;

 }

• Semaphores are based on a decrement / increment
 mechanism:
 – The initial value of the semaphore determines how many
 processes may “pass” (do not have to wait) the semaphore at once
 – If semaphore S > 0, then process can proceed, S is decremented
 – If semaphore S<= 0, then process has to wait for signal

 wait(S) {
 while(S <= 0) /* busy wait */;

 S -- ;

 }

signal(S) {

 S ++ ;

}

Mahmoud El-Gayyar / Introduction to OS 33

Semaphore Implementation with

 Blocking of Processes

• Semaphore is an object with
 the following elements
 – Public methods:
 • wait(S), signal(S)

 – Private
 • Semaphore Counter

 • Waiting queue for processes

• Involves the scheduler:
 – Processes that have to wait will

 be de-scheduled
– Waiting processes are held in the
 semaphore waiting queue

S
 wait (S)

signal (S)

Process

Semaphore Waiting List

 Process

 Process

 Process

Mahmoud El-Gayyar / Introduction to OS 34

• A semaphore is a data structure that contains

 Semaphore Data Structure

– A counter
– A waiting queue

• Semaphore can only be accessed by two atomic
 functions
 – wait (S) : decrements semaphore counter
 • If a process calls wait(), the counter is decremented, if it is
 zero – semaphore blocks calling process

 – signal(S) : increments semaphore counter
 • processes calling signal(S) wake up other processes

typedef struct {

 int counter;

 Queue plist ;

} Semaphore ;

Mahmoud El-Gayyar / Introduction to OS 35

Binary Semaphore

• Binary semaphore (also called a “mutex”):

– Initialized with 1

– Value of a binary semaphore toggles between 0
and 1

– A process calling wait() may continue
processing if semaphore value == 1, will set it
to zero

– Used for enforcing mutual exclusion

Mahmoud El-Gayyar / Introduction to OS 36

Binary Semaphore – Mutual Exclusion

 Critical_Section

 signal(mutex);

 Non_Critical_Section

 ...

• Guarantees mutual exclusion
 – Semaphore initialised to 1: maximal one process may enter
 critical section

• Binary semaphores can be used to implement mutex
 locks
 – N processes share a semaphore “mutex”

init(mutex,1)

 wait(mutex);

Initialization:

Process Pi:

Mahmoud El-Gayyar / Introduction to OS 37

Binary Semaphore – Mutual Exclusion

process ()
{

wait(S)

 critical_section() ;

signal(S)

remainder_section() ;

}

 Semaphore:

Initialization: init(S,1)

 int value ;
 queue plist ;

} Semaphore ;

wait(Semaphore S) {

 if(S.value > 0) S.value -- ;

 else {

 add this process to S.plist;

block();

}

}

signal(Semaphore S) {

 if(S.plist is empty) S.value ++;
 else {

remove a process P from S.plist;
wakeup(P);

}

}

Mahmoud El-Gayyar / Introduction to OS 38

Monitors

Solving the Critical Section Problem

Mahmoud El-Gayyar / Introduction to OS 39

Monitor

• A monitor is a software construct that serves two
purposes:

– enforces mutual exclusion of concurrent access
to shared data objects

• Processes have to acquire a lock to access such a
shared resource

– Support conditional synchronization between
processes accessing shared data:

• Multiple processes may use monitor-specific
wait()/signal() mechanisms to wait for particular
conditions to hold

Mahmoud El-Gayyar / Introduction to OS 40

Monitor cont…

• Monitors are typically supported by a
programming language

– Language-specific software construct

–e.g. Java (synchronized keyword)

• Programs using monitors are supposed to
allow easier implementation of mutual
exclusion and synchronization

Mahmoud El-Gayyar / Introduction to OS 41

Monitor Characteristics

• A monitor is a software construct consisting of

– One or more procedures

– Some local data that can only be accessed via these procedures

• Object-oriented concepts

– Local variables accessible only by the monitor’s procedures
(methods)

• Processes “enter” monitor when they invoke one of the

monitor’s procedures

• Mutual exclusion:

– Only one process at a time may call one of these
Procedures and “enter” the monitor

– All other processes have to wait

Mahmoud El-Gayyar / Introduction to OS 42

Process Synchronization

• A monitor also supports process synchronization with condition
variables

– Only accessible within the monitor with the functions wait(condition) and
signal(condition)

• A monitor may maintain a set of these condition variables

• For each condition variable, the monitor maintains a waiting
queue

Mahmoud El-Gayyar / Introduction to OS 43

Producer - Consumer
 monitor boundedBuffer

 {

 char b[N]; int count, in, out ;

 condition notfull, notempty;

void append(char item) {

 if (count == N) wait(notfull) ;

 b[in] = item;

 in = (in+1) mod N;

 count++;

signal(notempty);

}

char take() {

 if (count == 0) wait(notempty) ;

 item = b[out];

 out = (out+1) mod N;

 count--;

signal(notfull);

}

Acquire Lock

Acquire Lock

ReleaseLock

ReleaseLock

 }

Mutual
Exclusive
Execution

Mahmoud El-Gayyar / Introduction to OS 44

Mutual Exclusion in Java

• Mutexes and condition variables are built in to
every Java object.

– no explicit classes for mutuxes and condition variables

• Every object is/has a “monitor” .

– At most one thread may “own” any given object’s
monitor.

– A thread becomes the owner of an object’s monitor by

• executing a method declared as synchronized

• some methods may choose not to enforce mutual
exclusion (unsynchronized)

Mahmoud El-Gayyar / Introduction to OS 45

Message Passing

Solving the Critical Section Problem

Mahmoud El-Gayyar / Introduction to OS 46

Message Passing

• So far, we used shared memory for
synchronization

• Message passing can be used for mutual exclusion
and synchronization

• Synchronization

– Send(): blocking, non-blocking

– Receive(): blocking, non-blocking, test for arrival

• Message management at receiver side

– Queue, messages remain until consumed

– Buffer: new messages overwrite old messages

• Addressing

– 1:1, 1:N

Mahmoud El-Gayyar / Introduction to OS 47

Mutual Exclusion with Message Passing

•

•

•

•

•

•

Empty message used as a “token” that is exchanged between processes
Blocking receive()
Non-blocking send()
Mailbox initialized with a single empty message used as the token
If process receives message, the receive() function is unblocked,
it performs critical section and puts same message back into mailbox

Mailbox mailbox;

send(mailbox, NULL); //put token into mailbox

 Message token;

 receive(mailbox, token);

 Critical_Section

 send(mailbox, token);

 Non_Critical_Section

 ...

Initialization:

Process Pi:

Mahmoud El-Gayyar / Introduction to OS 48

Barriers

Barriers are intended for synchronizing groups of processes

Often used in scientific computations.

Mahmoud El-Gayyar / Introduction to OS 49

Review

• What is a race condition?

• Can the priority inversion problem happen with user-

level?

• In a system with threads, is there one stack per thread

or one stack per process when user-level threads are

used? What about when kernel-level threads are

used? Explain

Mahmoud El-Gayyar / Introduction to OS 50

Review

• If a system has only two processes, does it make sense to use

a barrier to synchronize them? Why or why not?

• Suppose that we have a message-passing system using

mailboxes. When sending to a full mailbox or trying to receive

from an empty one, a process does not block. Instead, it gets

an error code back. The process responds to the error code by

just trying again, over and over, until it succeeds. Does this

scheme lead to race conditions?

Mahmoud El-Gayyar / Introduction to OS 51

Review

• A fast food restaurant has four kinds of employees: (1) order takers, who

take customers‘ orders; (2) cooks, who prepare the food; (3) packaging

specialists, who stuff the food into bags; and (4) cashiers, who give the

bags to customers and take their money. Each employee can be regarded as

a communicating sequential process. What form of inter-process

communication do they use? Relate this model to processes in UNIX.

