
Mahmoud El-Gayyar / Introduction to OS      1  

Introduction to OS 

Threads 
MOS 2.2 

 

Mahmoud El-Gayyar 
elgayyar@ci.suez.edu.eg 

 



Mahmoud El-Gayyar / Introduction to OS      2  

Problem 

• Processes in Unix, Linux, and Windows are 

“heavyweight” 

 

• OS-centric view – performance 

 

• Application-centric view – flexibility and 

application design 



Mahmoud El-Gayyar / Introduction to OS      3  

OS-centric View of Problem 

• Lots of data in PCB & other data structures 

• Even more when we study memory management 

• More than that when we study file systems, etc. 

• Processor caches a lot of information  

• Memory Management information 

• Caches of active pages 

• Costly context switches and traps 

• 100’s of microseconds 



Mahmoud El-Gayyar / Introduction to OS      4  

Application-centric View of Problem 

• Separate processes have separate address 

spaces 

• Shared memory is limited or nonexistent 

• Applications with internal concurrency are difficult 

• Isolation between independent processes vs. 

cooperating activities 

• Fundamentally different goals 



Mahmoud El-Gayyar / Introduction to OS      5  

Example 

• Web Server – How to support multiple concurrent 
requests 

 

• One solution: 

– create several processes that execute in parallel 

 

• inefficient 

– Space and time:  PCB, page tables, cloning entire 
process, etc. 



Mahmoud El-Gayyar / Introduction to OS      6  

Example 2 

• Transaction processing systems 
• E.g, airline reservations or bank ATM transactions 

 

• 1000’s of transactions per second 
• Very small computation per transaction 

 

• Separate processes per transaction are too 

costly 



Mahmoud El-Gayyar / Introduction to OS      7  

Example 3 

• Games have multiple active characters 
• Independent behaviors 

• Common context or environment 

• Need “real-time” response to user 
• For interactive gaming experience 

• Programming all characters in separate 

processes is really, really hard! 

• Programming them in a single process is 

much harder without concurrency support. 



Mahmoud El-Gayyar / Introduction to OS      8  

Solution:– Threads 

• A thread is a particular execution of a program, 
function, or procedure within the context of a 
Unix or Windows process 

• I.e., a specialization of the concept of process 

• A thread has its own 
• Program counter, registers, PSW 

• Stack 

• A thread shares 
• Address space, heap, static data, program code 

• Files, privileges, all other resources 

 with all other threads of the same process 



Mahmoud El-Gayyar / Introduction to OS      9  

Address Space 
 Linux-Windows process 

0x00000000 

0xFFFFFFFF 

Virtual 

address space 

program code 

(text) 

static data 

 

heap 

(dynamically allocated) 

stack 

(dynamically allocated) 

PC 

SP 



Mahmoud El-Gayyar / Introduction to OS      10  

Address Space for Multiple Threads 

0x00000000 

0xFFFFFFFF 

Virtual 

address space 

code 

(text) 

static data 

 

heap 

 

thread 1 stack 

PC (T2) 

SP (T2) 

thread 2 stack 

thread 3 stack 

SP (T1) 

SP (T3) 

PC (T1) 

PC (T3) 



Mahmoud El-Gayyar / Introduction to OS      11  

Single and Multithreaded Processes 



Mahmoud El-Gayyar / Introduction to OS      12  

Benefits 

• Responsiveness 

 

• Resource Sharing 

 

• Economy 

 

• Utilization of multi-processor architectures 



Mahmoud El-Gayyar / Introduction to OS      13  

User vs. Kernel Threads 



Mahmoud El-Gayyar / Introduction to OS      14  

Implementation of Threads 

• User-level implementation 

– User-space function library 

– Runtime system – similar to process management 

except in user space 

– Windows NT – fibers: a user-level thread mechanism 

 

• Kernel implementation – primitive objects known 

to and scheduled by kernel 

– Linux: lightweight process (LWP) 

– Windows NT & XP: threads 



Mahmoud El-Gayyar / Introduction to OS      15  

User Threads  

• Can be implemented without kernel support 
• … or knowledge! 

• Program links with a runtime system that does 

thread management 
• Operation are very efficient (procedure calls) 

• Space efficient and all in user space (TCB) 

• Task switching is very fast 

• Since kernel not aware of threads, there can be 

scheduling inefficiencies 
• E.g., blocking I/O calls 

• Non-concurrency of threads on multiple processors 



Mahmoud El-Gayyar / Introduction to OS      16  

User Threads (continued) 

• Thread Dispatcher 

– Queues in process memory to keep track of threads’ state 

• Scheduler – non-preemptive 

– Assume threads are well-behaved 

– Thread voluntarily gives up CPU by calling yield() – does thread 
context switch to another thread 

• Scheduler – preemptive 

– Assumes threads may not be well-behaved 

– Scheduler sets timer to create a signal that invokes scheduler 

– Scheduler can force thread context switch 

– Increased overhead 

• Application or thread library must handle all concurrency 
itself! 



Mahmoud El-Gayyar / Introduction to OS      17  

Kernel Threads 

• Supported by the Kernel 
• OS maintains data structures for thread state and 

does all of the work of thread implementation. 

• Examples 
• Windows XP/2000 

• Solaris 

• Linux version 2.6 

• Tru64 UNIX 

• Mac OS X 



Mahmoud El-Gayyar / Introduction to OS      18  

Kernel Threads (continued) 

• OS schedules threads instead of processes 

• Benefits 

– Overlap I/O and computing in a process 

– Creation is cheaper than processes 

– Context switch can be faster than processes 

• Negatives 

– System calls (high overhead) for operations 

– Additional OS data space for each thread 



Mahmoud El-Gayyar / Introduction to OS      19  

Thread Libraries 

• Thread management done by a thread library 

• Three primary thread libraries: – 

–  POSIX Pthreads - may be provided as either a user 

or kernel library 

– Win32 threads - provided as a kernel-level library 

on Windows systems. 

– Java threads - Java runs on a Java Virtual Machine, 

the implementation of threads is based upon 

whatever OS the JVM is running on, i.e. either 

Pthreads or Win32 threads depending on the system. 



Mahmoud El-Gayyar / Introduction to OS      20  

Unix Processes vs. Threads 

• On a 700 Mhz Pentium running Linux 

– Processes:  

• fork(): 250 microsec 

– Kernel threads: 

• pthread_create(): 90 microsec 

– User-level threads: 

• pthread_create(): 5 microsec 



Mahmoud El-Gayyar / Introduction to OS      21  

Thread Pools (Implementation technique) 

• Create a number of threads in a pool where they await work 

• Advantages: 

– Usually slightly faster to service a request with an existing thread than 

create a new thread 

– Allows the number of threads in the application(s) to be bound to the size 

of the pool 



Mahmoud El-Gayyar / Introduction to OS      22  

Threads – Summary 

• Threads were invented to counteract the 

heavyweight nature of Processes in Unix, 

Windows, etc. 

• Provide lightweight concurrency within a single 

address space 

• Have evolved to become the primitive abstraction 

defined by kernel 

– Fundamental unit of scheduling in Linux, Windows, etc 



Mahmoud El-Gayyar / Introduction to OS      23  

Review 

• Shall a thread have its own registers? 

• Can a thread ever be preempted by a clock interrupt? 

If so, under what circumstances? If not, why not? 

• What is the biggest advantage of implementing 

threads in user space? What is the biggest 

disadvantage? 

 

 

 

 

 

 


