Introguction to OS
Processes In

Unix, Linux, and Windows
MOS 2.1

Mahmoud El-Gayyar

elgayyar@ci.suez.edu.eg

—

g
S

\

f

f

g

f.j

Mahmoud EI-Gayyar / Introduction to OS

LY

'\:\“S

@
Ill Processes in Unix, Linux, and Windows %

7T\

« Unix pre-empted generic term “process” to
mean something very specific

 Linux and Windows adopted Unix definition

Mahmoud EI-Gayyar / Introduction to OS 2

PN

N\

e\

PSiry

1%
pr :

'\:\“S
PSiry

7T\

° &\nhaq%
I'ri Process in Unix-Linux-Windows b2
Includes e

* an address space — usually protected and virtual — mapped
Into memory

 the codlefor the running program

 the datafor the running program

* an execution stack and stack pointer (SP); also heap
 the program counter (PC)

 aset of processor registers— general purpose and status

 aset of system resources
— files, network connections, pipes, ...
— privileges, (human) user association, ...

Mahmoud EI-Gayyar / Introduction to OS 3

IT]Process Address Space (traditional Unlx) =

OXFFFFFFFF

A

Virtual

address space

0x00000000

stack
(dynamically allocated)

’
T

heap
(dynamically allocated)

static data

program code
(text)

\ ol
S

~
/] o~
&

“ SP

“— PC

Mahmoud EI-Gayyar / Introduction to OS

E
-4

il
g

ITi Processes in the OS — Representation

g W

PSiry

« To users (and other processes) a process IS
Identified by its Process ID (PID)

 In the OS, processes are represented by entries in a
Process Table (PT)

— PID is index to (or pointer to) a PT entry
— PT entry = Process Control Block (PCB)

PCB Is a large data structure that contains or
points to all info about the process

— Linux — defined In task struct (over 70 fields)
* See include/linux/sched.h

— Windows XP — defined in EPROCESS — about 60
fields

Mahmoud EI-Gayyar / Introduction to OS

LY

'\:\“S
PSiry N

S e?\"“o
ITi Processes 1n the OS — PCB &

» Typical PCB contains:
— execution state

— PC, SP & processor registers — stored when
process Is not in running state

— memory management info
— privileges and owner info
— scheduling priority

— resource info

— accounting info

Mahmoud EI-Gayyar / Introduction to OS 6

Iy

Process — Starting and Ending

* Processes are created ...
— When the system boots
— By the actions of another process (more later)
— By the actions of a user
— By the actions of a batch manager

* Processes terminate ...
— Normally — exit
— Voluntarily on an error
— Involuntarily on an error

— Terminated (killed) by action of
* auser or
« another process

LY

'\:\“S

1

Sl

v \‘(’

STy eN

f

Mahmoud EI-Gayyar / Introduction to OS

ITi Processes — States

 Process has an execution state
— reaqy. waiting to be assigned to CPU
— running. executing on the CPU
— waiting. waiting for an event, e.g. 1/O

=

admitted interrupt exit terminated

scheduler dispatch

I/O or event completion I/O or event wait

waiting

Mahmoud EI-Gayyar / Introduction to OS 8

ITi Processes — State Queues o

W,
eN

'\:\“S
PSiry

 The OS maintains a collection of process state

queues
— typically one queue for each state — e.g., ready, waiting,

— each PCB is put onto a queue according to its current
state

— as a process changes state, its PCB is unlinked from one
queue, and linked to another

» Process state and the queues change in response to
events — interrupts, traps

Mahmoud EI-Gayyar / Introduction to OS

LY
pr

'\:\“S
PSiry

' =
ITi Processes — Privileges b &

« Users are given privileges by the system administrator

 Privileges determine user rights

— Unix/Linux — (9 bits) Read|Write|eXecute by user, group and

“other” (i.e., “world”)

— WINNT — Access Control List

» Processes “inherit” privileges from user

— or from creating process

Mahmoud EI-Gayyar / Introduction to OS 10

ITi Process Creation — Unix & Linux

 Create a new (child) process — fork () ;

— Allocates new PCB

— Clones the calling process (almost exactly)
» Copy of parent process address space
» Copies resources in kernel (e.g. files)

— Places new PCB on Ready queue

— Return from fork () call

* O for child
e child PID for parent

Sl

W,
eN

'\:\“S
PSiry

o\

Mahmoud EI-Gayyar / Introduction to OS

11

Example of 7ork()

int main(int argc, char **argv)

{

char *name = argv/[0];
int child pid = fork();
if (child pid == 0) {

printf (“Child of %s sees PID of %d\n”,
name, child pid);
return 0;

} else {
printf ("I am the parent %s. My child is %d\n”,
name, child pid);
return O;

}

%6 ./forktest
Child of forktest sees PID of 0
| am the parent forktest. My child is 486

Mahmoud EI-Gayyar / Introduction to OS 12

Iy

Starting New Programs

« Unix & Linux:—
— int exec (char *prog, char **argv)

— Check privileges and file type

— Loads program at path prog into address space
 Replacing previous contents!
 Execution starts at main ()

— Initializes context — e.g. passes arguments

° *argv
— Place PCB on ready queue

— Preserves, pipes, open files, privileges, etc.

=4

PSiry

— \\&

Mahmoud EI-Gayyar / Introduction to OS

13

1%
pr :

'\:\“S
PSiry

® - Q'&\“Lmq%
I'I“ Executing a New Program ba)
I (Linux-Unix) K

. fork () followed by exec ()

 Creates a new process as clone of previous

one
* |.e., same program, but different execution of it

* First thing that clone does is to replace itself
with new program

Mahmoud EI-Gayyar / Introduction to OS 14

| Fork + Exec— shell-like

int main(int argc, char **argv)
{ char *argvNew[5];

int pid;
if ((pid = fork()) < 0) {
printf ("Fork error\n"“);
exit(1l);
} else if (pid == 0) { /* child process */
argvNew[0] = "/bin/1ls"; /* i.e., the new program */
argvNew[1l] = "-1";
argvNew[2] = NULL;
if (execve(argvNew[0], argvNew, environ) < 0) {
(

printf ("Execve error\n%);
exit(l); /* program should not reach this point */
}
} else { /* parent */
wait (pid); /* wait for the child to finish */

Mahmoud EI-Gayyar / Introduction to OS 15

LY

'\:\“S
PSiry N

o e?\"“o
ITi Processes — Windows B

e Windows NT/XP —combines fork & exec

— CreateProcess (10 arguments)

— Not a parent child relationship

— Note — privileges required to create a new
process

Mahmoud EI-Gayyar / Introduction to OS 16

ITi Traditional Unix

» Processes are In separate address spaces
By default, no shared memory

» Processes are unit of scheduling
A process IS reaay, waiting, or running

o Processes are unit of resource allocation
* Files, I/0, memory, privileges, ...

* Processes are used for (almost) everything!

Mahmoud EI-Gayyar / Introduction to OS 17

ITi Review

« What is the difference/s between processes in Linux
and Windows?

1523

Mahmoud EI-Gayyar / Introduction to OS

