
Mahmoud El-Gayyar / Introduction to OS 1

Introduction to OS

Processes in

Unix, Linux, and Windows
MOS 2.1

Mahmoud El-Gayyar
elgayyar@ci.suez.edu.eg

Mahmoud El-Gayyar / Introduction to OS 2

Processes in Unix, Linux, and Windows

• Unix pre-empted generic term “process” to

mean something very specific

• Linux and Windows adopted Unix definition

Mahmoud El-Gayyar / Introduction to OS 3

Process in Unix-Linux-Windows

includes

• an address space – usually protected and virtual – mapped
into memory

• the code for the running program

• the data for the running program

• an execution stack and stack pointer (SP); also heap

• the program counter (PC)

• a set of processor registers – general purpose and status

• a set of system resources
– files, network connections, pipes, …

– privileges, (human) user association, …

Mahmoud El-Gayyar / Introduction to OS 4

Process Address Space (traditional Unix)

0x00000000

0xFFFFFFFF

Virtual

address space

program code

(text)

static data

heap

(dynamically allocated)

stack

(dynamically allocated)

PC

SP

Mahmoud El-Gayyar / Introduction to OS 5

Processes in the OS – Representation

• To users (and other processes) a process is
identified by its Process ID (PID)

• In the OS, processes are represented by entries in a
Process Table (PT)

– PID is index to (or pointer to) a PT entry

– PT entry = Process Control Block (PCB)

• PCB is a large data structure that contains or
points to all info about the process

– Linux – defined in task_struct (over 70 fields)
• see include/linux/sched.h

– Windows XP – defined in EPROCESS – about 60
fields

Mahmoud El-Gayyar / Introduction to OS 6

Processes in the OS – PCB

• Typical PCB contains:

– execution state

– PC, SP & processor registers – stored when
process is not in running state

– memory management info

– privileges and owner info

– scheduling priority

– resource info

– accounting info

Mahmoud El-Gayyar / Introduction to OS 7

Process – Starting and Ending

• Processes are created …
– When the system boots

– By the actions of another process (more later)

– By the actions of a user

– By the actions of a batch manager

• Processes terminate …
– Normally – exit

– Voluntarily on an error

– Involuntarily on an error

– Terminated (killed) by action of
• a user or

• another process

Mahmoud El-Gayyar / Introduction to OS 8

Processes – States

• Process has an execution state

– ready: waiting to be assigned to CPU

– running: executing on the CPU

– waiting: waiting for an event, e.g. I/O

Mahmoud El-Gayyar / Introduction to OS 9

Processes – State Queues

• The OS maintains a collection of process state

queues

– typically one queue for each state – e.g., ready, waiting,

…

– each PCB is put onto a queue according to its current

state

– as a process changes state, its PCB is unlinked from one

queue, and linked to another

• Process state and the queues change in response to

events – interrupts, traps

Mahmoud El-Gayyar / Introduction to OS 10

Processes – Privileges

• Users are given privileges by the system administrator

• Privileges determine user rights

– Unix/Linux – (9 bits) Read|Write|eXecute by user, group and

“other” (i.e., “world”)

– WinNT – Access Control List

• Processes “inherit” privileges from user

– or from creating process

Mahmoud El-Gayyar / Introduction to OS 11

Process Creation – Unix & Linux

• Create a new (child) process – fork();

– Allocates new PCB

– Clones the calling process (almost exactly)

• Copy of parent process address space

• Copies resources in kernel (e.g. files)

– Places new PCB on Ready queue

– Return from fork() call

• 0 for child

• child PID for parent

Mahmoud El-Gayyar / Introduction to OS 12

Example of fork()

int main(int argc, char **argv)

{

 char *name = argv[0];

 int child_pid = fork();

 if (child_pid == 0) {

 printf(“Child of %s sees PID of %d\n”,

 name, child_pid);

 return 0;

 } else {

 printf(“I am the parent %s. My child is %d\n”,

 name, child_pid);

 return 0;

 }

}

% ./forktest

Child of forktest sees PID of 0

I am the parent forktest. My child is 486

Mahmoud El-Gayyar / Introduction to OS 13

Starting New Programs

• Unix & Linux:–
– int exec (char *prog, char **argv)

– Check privileges and file type

– Loads program at path prog into address space

• Replacing previous contents!

• Execution starts at main()

– Initializes context – e.g. passes arguments
•*argv

– Place PCB on ready queue

– Preserves, pipes, open files, privileges, etc.

Mahmoud El-Gayyar / Introduction to OS 14

Executing a New Program

(Linux-Unix)

• fork() followed by exec()

• Creates a new process as clone of previous

one
• I.e., same program, but different execution of it

• First thing that clone does is to replace itself

with new program

Mahmoud El-Gayyar / Introduction to OS 15

Fork + Exec – shell-like

int main(int argc, char **argv)

{ char *argvNew[5];

 int pid;

 if ((pid = fork()) < 0) {

 printf("Fork error\n“);

 exit(1);

 } else if (pid == 0) { /* child process */

 argvNew[0] = "/bin/ls"; /* i.e., the new program */

 argvNew[1] = "-l";

 argvNew[2] = NULL;

 if (execve(argvNew[0], argvNew, environ) < 0) {

 printf("Execve error\n“);

 exit(1); /* program should not reach this point */

 }

 } else { /* parent */

 wait(pid); /* wait for the child to finish */

 }

}

Mahmoud El-Gayyar / Introduction to OS 16

Processes – Windows

• Windows NT/XP – combines fork & exec

– CreateProcess(10 arguments)

– Not a parent child relationship

– Note – privileges required to create a new

process

Mahmoud El-Gayyar / Introduction to OS 17

Traditional Unix

• Processes are in separate address spaces
• By default, no shared memory

• Processes are unit of scheduling
• A process is ready, waiting, or running

• Processes are unit of resource allocation
• Files, I/O, memory, privileges, …

• Processes are used for (almost) everything!

Mahmoud El-Gayyar / Introduction to OS 18

Review

• What is the difference/s between processes in Linux

and Windows?

