
Mahmoud El-Gayyar / Introduction to OS 1

Introduction to OS

File Management

MOS Ch. 4

Mahmoud El-Gayyar
elgayyar@ci.suez.edu.eg

Mahmoud El-Gayyar / Introduction to OS 2

• Provide I/O support for a variety of storage

device types

• Provide a standardized set of I/O interface

routines to user processes

• Provide I/O support for multiple users

• Guarantee that the data in the file are valid

• Optimise performance

File Management Objectives

Mahmoud El-Gayyar / Introduction to OS 3

File Magement

Mahmoud El-Gayyar / Introduction to OS 4

Files - I

• Files provide a way to store information on
disk

• Properties
– Persistence / long-term existence
– Shareable between processes

• Have associated file permission, attributes that express
ownership, allow a controlled sharing of files

– Organisational Structure / File System
• Files can be organised into hierarchical structures to

reflect the relationships among files

Mahmoud El-Gayyar / Introduction to OS 5

Files - II

• Files are an abstraction concept

– Users operate with a simple model of a byte
stream being written to or read from disk

– Operating system hides details how disk space is
allocated to store the information represented by
a file

• File systems manage files on disk space

Mahmoud El-Gayyar / Introduction to OS 6

• Program regards file as a byte stream, file descriptor points to buffer
• Operating system loads disk blocks belonging to a file
• Questions:
 – Which disk blocks belong to a file?
 – Which block is the next block in sequence?

File * filedescriptor

User Program

Files - III

Mahmoud El-Gayyar / Introduction to OS 7

• Operations
 – read, write, seek, create, delete

• Meta-data that describes a file
 – Directory entry stores file attributes
 – File attributes

•

•

•

•

•

•

Name, type
Location: where to find the actual data on disk
Size
Access control: who may read / write /execute
Time: creation, last access, etc
Version

File Abstraction

Mahmoud El-Gayyar / Introduction to OS 8

• Manages storage of data on disk
• Organisation unit is a file:
 – Data object that occupies disk space

• File systems organise disk space
 – The disk itself becomes a data object – container for files

• Concerns:

–

–

–

–

–

–

Localization: Records where and how files are stored
Structure: Files are organised in directories / folders
Access: Allows the creation of files, read and write operations
Performance: reduce I/O operations
Reliability: can recover from system crash and faults
Security: Protection and ownership

File Systems

Mahmoud El-Gayyar / Introduction to OS 9

• On secondary storage, a file consists of a
collection of blocks

• The operating system / file management is
responsible for allocating blocks to files

• Two issues
– Allocated-space management: record how space

on secondary storage is allocated to files

– Free-space management: OS must keep track of
the space available for allocation

File Allocation, Storage Management

Mahmoud El-Gayyar / Introduction to OS 10

File Allocation Method

• Disks are organised in a block structure, each
block of a particular size

• A file is stored on disk as a collection of these
blocks
– Blocks are allocated to files

• Block allocation strategies
– Contiguous allocation
– Non-contiguous allocation:

• chained allocation
• Indexed allocation

o FAT, i-Nodes

Mahmoud El-Gayyar / Introduction to OS 11

Contiguous Allocation of Blocks

• Simplest form, simple to
implement, excellent read
performance as a file spans across
a contiguous set of disk blocks

• Over time, disk becomes
fragmented, compaction necessary,
external fragmentation

• Infeasible for disk management,
was used on magnetic tapes

• Is again important for write-once
optical devices such as CD-ROMS
 – File size is known in advance, file is

written in one action, occupies a
contiguous space

Mahmoud El-Gayyar / Introduction to OS 12

• A file may occupy a non-contiguous disk
 area

• The blocks allocated to a file form a chain:
 – Each block points to its successor block

myfile.txt Directory

• Advantage
 – No external fragmentation

 First Block

 Filename

4

13

50

51

52

1023

0
1
2
3

Chained Allocation

Non-contiguous Allocation

Mahmoud El-Gayyar / Introduction to OS 13

Chained Allocation - II

• Each block of a file contains a pointer to a next
block – blocks form a chain

• No space lost due to disk fragmentation
– No external fragmentation

• Reading a file sequentially is straight-forward
– Follow the pointer to the next chain element

• Random access extremely slow
– We have to follow the chain pointers until we find

the right disk block
– I/O operations for each visited block: must be read

to access pointer and read next block

• Waste of space
– Chain pointer is part of disk block
– A small part (32-bit or 64-bit address, 4 or 8 bytes)

are wasted on these pointers

Mahmoud El-Gayyar / Introduction to OS 14

Indexed Allocation - I

• A directory entry points to a disk block that
contains an index table for a file

Mahmoud El-Gayyar / Introduction to OS 15

• Eliminates disadvantages of chained allocation

– takes the pointers out of the data disk blocks and
collects them in an extra table

• Two important fans

– File Allocation Table FAT (MSDOS / Windows)

– i-Nodes (Unix)

Indexed Allocation - II

Mahmoud El-Gayyar / Introduction to OS 16

File Allocation Table (FAT)

• Combines chained allocation with a separate index table – the “File
Allocation Table” (FAT)
– takes the pointers out of the disk blocks and collects them it in an

extra table – the File Allocation Table (FAT)

• FAT table itself is stored at the beginning of the disk, occupies itself
a couple of blocks

• Advantage:
– FAT can be traversed very fast for block chains
– Good for direct access to a single block as well as a sequential read of

a file

• Disadvantage:
– FAT itself may be large, has to be held in memory, must be saved on

the disk as well

– 200-GB disk and a 1-KB block size, 200 million FAT entries. Each entry
 has to be a minimum of 3 bytes. Thus the table will take up 600 MB

Mahmoud El-Gayyar / Introduction to OS 17

Example: File Allocation Table FAT

EOC 0

1

2

3

50 13

EOC

Free

 4

Free

 50

 51

 52

1023

13 4

Directory
Filename

First Block

myfile.txt 52

0

1

2

13

50
51
52

1023

3
4

FAT

Mahmoud El-Gayyar / Introduction to OS 18

File Allocation Table (FAT)

• File Allocation Table is loaded into memory, when
disk is mounted by operating system
 – All chain pointers now in main memory

– can easily be followed to find a block address
– I/O action only needed to load actual disk block

• Entries in FAT form a block chain for a file
– The index of the FAT entry is the block address of a file
– The content of the FAT entry is the index of the next

FAT entry in the chain and the block address of the
next disk block of the file

Mahmoud El-Gayyar / Introduction to OS 19

• Allocating a new disk block for a file

 – Information about free blocks are

 held in the FAT

• Find a FAT entry that is marked as

 “free” and extend the block chain

• I/O operation for FAT:

 – As FAT is changed, it has to be written

 to disk – can be immediate or
 deferred

EOC
 13

 50

free

free

free

EOC

Free

 4

free

 0

 1

 2

 3

 4

 13

 25

 26

 27

 50

 51

 52

1023

FAT: Extending a File

Mahmoud El-Gayyar / Introduction to OS 20

FAT: Extending a File

EOC
 13

 50

free

free

free

EOC

Free

 4

free

 0

 1

 2

 3

 4

 13

 25

 26

 27

 50

 51

 52

1023

EOC
 13

 50

EOC

free

free

 25

Free

 4

free

 0

 1

 2

 3

 4

 13

 25

 26

 27

 50

 51

 52

1023

Mahmoud El-Gayyar / Introduction to OS 21

•

•

•

The FAT itself has to be permanently stored on disk
 – Will occupy disk blocks
 – There is a block chain for the FAT itself

Given:
 – Hard disk has 1024 blocks (1Mb)
 – FAT table: 1024 entries, FAT entry: 16 bit (2 bytes)
 – Block size: 1024 bytes

We need
– Two disk blocks for FAT table: each block can hold 512 entries 0

1023

1
2
3
4

EOC

 2

EOC

512

513

1023

 0

 1

 2

 3

 4

511

FAT Block Chain

Storing the FAT

Mahmoud El-Gayyar / Introduction to OS 22

2
2

2

2
2

•

•

•

•

•

•

Size of FAT

Storage: 8GB USB drive, Block size: 4KB
How many blocks do we need on the disk for the FAT?
Remember:
 – 8GB = 8 x 1024 x 1024 x 1024 bytes
 – 4KB = 4 x 1024 bytes

We calculate:
 – 8GB / 4KB = 8 x 1024 x 1024 x 1024 bytes / 4 x 1024 bytes = 2 x 1024 x 1024 = 2 Mio blocks

Addressing:
 – We need at least 221 entries in the FAT to address all 2 Mio blocks (2x 220)
 – We choose a 32-bit format for FAT entries (4 bytes), 1 block can hold 1024 entries: 4 x 1024
 bytes / 4 bytes = 1024 entries

Space for FAT on disk
 – 2 x 1024 x 1024 entries / 1024 entries = 2 x 1024 = 2048 blocks for the FAT

Bytes Exponent

 1,024
 1,048,576
1,073,741,824

210

 20

 30

 1kb
1MB
 1GB

1024bytes
 1024kb
 1024MB

 1024 x 1024
1024 x 1024 x 1024

4,294,967,296 232 4GB 4 x 1024MB 4 x 1024 x 1024 x 1024

1024GB
 1024TB
1024PB

 1,099,511,627,776
 1,125,899,906,842,620
 1,152,921,504,606,850,000
18,446,744,073,709,600,000

 40

250

 60

 64

 1TB
 1PB
 1EB
16EB

 1024 x 1024 x 1024 x 1024
 1024 x 1024 x 1024 x 1024 x 1024
 1024 x 1024 x 1024 x 1024 x 1024 x 1024
16 x 1024 x 1024 x 1024 x 1024 x 1024 x 1024

Mahmoud El-Gayyar / Introduction to OS 23

FAT: Deleting Files

• Deleting a file is fast
• Two actions

– The directory entry for a file is marked as deleted
• First character of filename is set to some non-printable

value to make it “invisible” (in the FAT implementation,
it is set to 0xE5)

– All entries of the block chain are set to “free”

• I/O operation for FAT only:
– As FAT is changed, it has to be written to disk –

can be immediate or deferred

Mahmoud El-Gayyar / Introduction to OS 24

Free Space Management FAT

• Information in FAT table determines whether a
block on disk is free
– All free blocks are marked as “unused”

• When a file is deleted
– The directory entry for a file is marked as deleted

• First character of filename is set to 0xE5

– The block chain for this file is cleared in the FAT
• All FAT entries of such a chain are set to a value indicating

that it is “unused”

• Blocks on disk are untouched, no update of their
content is needed

Mahmoud El-Gayyar / Introduction to OS 25

i-Nodes

• All types of Unix files are managed by the operating system
by means of i-Nodes
– A control structure (“index” node) that contains the key

information needed by the operating system for a particular file
• Describes its attributes
• Points to the disk blocks allocated to a file

• The i-Node is an index to the disk blocks of a file
– One i-Node per file

• There can be several file names for a single i-Node
– Under Unix, we can create “links” as aliases for files

• But:
– An active i-Node is associated with exactly one file
– Each file is controlled by exactly one i-Node

Mahmoud El-Gayyar / Introduction to OS 26

Indexed Allocation: i-Nodes

• Hierarchical index
– One disk block can only contain a small list of addresses to

disk blocks

– Has therefore multiple levels: an entry may point to a sub-
index table

• Can address very large files

• Most popular form of file allocation (Unix, other
systems)

• The i-Node records only the blocks allocated to a file
• Requires a management of a separate list of free blocks

Mahmoud El-Gayyar / Introduction to OS 27

Inode

 Inode

• A simple list of block references (single-level) allows
 fast access to all blocks of a file
• But: it restricts the maximum size of a file

 Filetype

 Other
Attributes

Index

Mahmoud El-Gayyar / Introduction to OS 28

Indexed Allocation: i-Nodes

• i-Node manages n-level index

– Entry in the i-Node points to a block on disk that
contains pointers to other blocks

• How can we distinguish between index blocks
and data blocks?

• How do we know how many levels the index
has?

Mahmoud El-Gayyar / Introduction to OS 29

File Allocation with Inodes

• Inode contains index referencing allocated blocks
– First N entries point directly to the first N blocks allocated for

the file

– If file is longer than N blocks, more levels of indirection are used
– Inode contains three index entries for “indirect” addressing

• “single indirect” address:
– Points to an intermediate block containing a list of pointers

• “double indirect” address:
– Points to two levels of intermediate pointer lists

• “triple indirect” address:
– Points to three levels of intermediate pointer lists

• The initial direct addresses and the three multi-level
indirect addressing means form the index

Mahmoud El-Gayyar / Introduction to OS 30

i-Node Indexed References of Disk Blocks

Mahmoud El-Gayyar / Introduction to OS 31

i-Node Direct and Indirect Indexing - I

• Example implementation with 13 index entries:
– i-Node contains a list of 13 index entries that combine

four different forms of index
– Direct block references:

• 10 entries of this list point directly to file data blocks

– Single indirect (two levels):
• Entry 11 is regarded as always pointing to an index disk

block: this index block contains address of actual file data
blocks

– Double indirect (three levels): entry 12 is regarded to
be the starting point of a three-level index

– Triple indirect (four levels): entry 13 is regarded to be
the starting point of a four-level index

Mahmoud El-Gayyar / Introduction to OS 32

i-Node Direct and Indirect Indexing - II

• Based on which entry in the i-Node is used,

the file system management can distinguish
whether an indexed block is a data block or
another level of one of the indices

• Assumption

– There are many small files, the number of directly
referenced blocks may be enough

– For larger files, the additional indices are used

Mahmoud El-Gayyar / Introduction to OS 33

i-Node Table

• Operating system has to manage the i-Node
table

– When a file is opened / created, its i-Node is
loaded into the i-Node table

– The size of this table determines the number of
file that can be held open at the same time

Mahmoud El-Gayyar / Introduction to OS 34

File Allocation with i-Nodes

• What is maximum size of a file that can be indexed:
– Depends of the capacity of a fixed-sized block

• Example implementation with 15 index entries:
– 12 direct, single (13) / double (14) / triple (15) indirect
– Block size 4kb, holds 512 block addresses (32-bit

addresses)

Mahmoud El-Gayyar / Introduction to OS 35

i-Nodes

• Advantage
– i-Node is only loaded into memory when a file is opened
– Good for managing very large disks efficiently

– We need a list of i-Nodes of open files: size of this list
determines how many files may be open at the same time

• Disadvantage
– The i-Node only has a fixed list for block references
– If a file is small, fast and efficient management

– If file is large, the i-Node has to be extended with a
hierarchy of indirect block lists connected to the i-Node,
needs extra I/O operations to scan the index

Mahmoud El-Gayyar / Introduction to OS 36

Free Space Management - I

• Just as allocated space must be managed, so
must unallocated space

• It is necessary to know which blocks are available
• Methods

– Bit tables: for each block one bit (used, unused)
• As small as possible

– Free portions chained together
• Each time a block is allocated, it has to be read first get the

pointer to the next free block

– Indexing
• Treats free space as a file
• Create pool of free i-nodes and free disk blocks

Mahmoud El-Gayyar / Introduction to OS 37

Free Space Management - II

• Bit Table
– Vector of bits: each bit for one disk block
– Is as small as possible

• Can still be of considerable size:
– Amount of memory (bytes) needed:

(Disk size / block size) /8

• Example:
– 16 GB hard disk, block size 512 bytes: bit table

occupies 4 MB, requires 8000 disk blocks when stored
on the disk

Mahmoud El-Gayyar / Introduction to OS 38

Free Space Management - III

• Chained Free blocks

– We can chain free blocks together

– Each free block contains a pointer to next free block

• Problem

– When a free block is allocated, it has to be read from
disk first to retrieve the “next free block pointer”

Mahmoud El-Gayyar / Introduction to OS 39

Free Space Management - IV

• Indexing:

– Free space is treated like a file collecting all the
free blocks

• Free Block List:

– Each block is assigned a number sequentially

– The list of numbers of all free blocks is maintained
in a reserved portion of the disk

Mahmoud El-Gayyar / Introduction to OS 40

Directories

• Directories maintain information about files
– File name
– Location of actual data related to such a file name

• File name is a symbolic representation of data stored on
disk

• Directory entry
– File name
– File attributes
– Physical address of the file data

• Directory structure
– Simple list
– Hierarchical, tree structure: directories contain sub-directories

Mahmoud El-Gayyar / Introduction to OS 41

Hierarchical Directories

• Unix uses a hierarchy of directories
• Top-level directory: root

– All other directories are sub-directories of root

• Path:
– Is the sequence of subdirectories to reach a file

• Path name:
– Absolute: uniquely identifies a file within the directory hierarchy

• Starts with root
• Example: “/usr/local/myname/myfile.txt”

– Relative: identifies a file, starting from the current working directory
• Example:

– working directory: “/usr”
– Path name: “local/myname/myfile.txt”

• Special files in a directory:
– “.” points to the directory itself: “./myfile.txt”
– “..” points to the parent directory: “../myname/myfile.txt”

Mahmoud El-Gayyar / Introduction to OS 42

Directories in Unix

• Structured as a tree
– Each directory contains files

and/or other sub-directories

• Implementation:
– A directory is a file that

contains a list of file names
and a reference to the
corresponding inode in the
inode table of a volume

– Inode reference:
• Is the so-called “i-number”:

index into the inode table

Mahmoud El-Gayyar / Introduction to OS 43

Unix Directories and i-Nodes

• Directories are
structured as a tree

• Directory entries

contain filename
and associated i-
number

 The index into the

i-Node table

Mahmoud El-Gayyar / Introduction to OS 44

File System Performance

• Is achieved with caches
• Buffer cache

– Hold data in memory, perform read / write operation much
faster

– Needs some form of block management
• When a disk block is updated, it must be found in cache

– Is a danger to file system integrity

– Unix: system call “sync()” that allows to force a write of cache
content

• Write-through cache
– Disk access for each write operation, data is kept in cache for

fast read
– More secure, less performance

Mahmoud El-Gayyar / Introduction to OS 45

Unix Volume Management

• A UNIX file
 system resides
 on a single logical
 disk or disk
 partition
• Has a particular
 layout

–

–

Boot block
Superblock

–

–

Inode table
Data blocks

Boot block

 contains
 code
 required to
 boot the
operating
 system

Superblock

 contains
 attributes
 and
 information
about the file
 system

Inode table

 collection
 of inodes

for each
 file

 Data
 blocks

storagespace
 available for
 data files and
subdirectories

Mahmoud El-Gayyar / Introduction to OS 46

• Master Boot Record (MBR)
 – Sector 0 of disk: Contains boot code
 – Partition table

• System start
 – MBR is loaded into memory
 – Program contained in MBR
 • loads the boot block of the active partition, or
 • Provides menu for loading a particular partition

MBR Partition Partition Partition Partition

Boot block Super block Free Mgmt i-Nodes Root dir Files, directories

Unix Disk and File System Layout

Mahmoud El-Gayyar / Introduction to OS 47

Unix File Management

• Unix distinguishes six types of files
– Regular or ordinary

• Contains arbitrary data in zero or more data blocks

– Directory
• Contains a list of file names plus pointers to associated indexing information

(inodes) pointing to allocated disk blockes

– Special
• Contains no data, are not real files, but used to map physical devices to

filenames, usual file management functions can be used for read / writes

– Named pipes
• Also a kind of file used to create pipes

– Links
• Alternative file name for existing file (multiple directory entries for the same

file on the disk), data accessible as long as one hard link exists

– Symbolic links
• A special file that contains the name of a file it is linked to

Mahmoud El-Gayyar / Introduction to OS 48

Hard vs. Symbolic Links

• If C tries to remove the file,
o clears the i-node, B will have a directory entry pointing to an invalid i-

node. If the i-node is later reassigned to another file, B's link will point

to the wrong file.

• With symbolic links this problem does not arise
o because only the true owner has a pointer to the i-node. Users who

have linked to the file just have path names.

o when destroyed, symbolic link will fail when the system is unable to

locate the file.

Mahmoud El-Gayyar / Introduction to OS 49

Review

• Some digital devices need to store data, for example as files.

Name a modern device that requires file storage and for which

contiguous allocation would be ideal.

• How does MS-DOS implement random access to files?

