

Fundamentals of Multimedia

Lecture 6 Lossy Data Compression

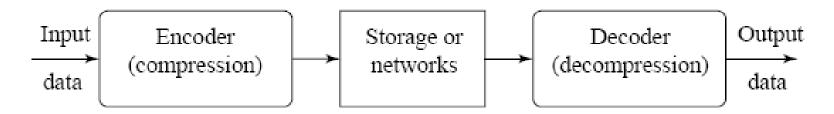
Mahmoud El-Gayyar

elgayyar@ci.suez.edu.eg

Outcomes of Lecture 5

- VariableLength Coding
 - Shannon-Fano Algorithm
 - Huffman Coding Algorithm
- Lossless Compression in JPEG images.
 - Differential Coding
 - Lossless JPEG

Outline


- Lossy Compression
 - Definition
 - Distortion measure
- Quantization
 - Uniform scale quantization
 - Nonuniform scale quantization

Outline

- Lossy Compression
 - Definition
 - Distortion measure
- Quantization
 - Uniform scale quantization
 - Nonuniform scale quantization

Lossy Compression

- Lossy compression yields a much higher compression ratio
 - Multimedia compression implementations generally are combination of lossy and lossless compression
 - The compression and decompression processes induce information loss
 - The recovered file from the compressed data is a close approximation of its o riginal
- Distortion measures
 - How close an approximation is to its original

Distortion Measures

• Mean square error (MSE)

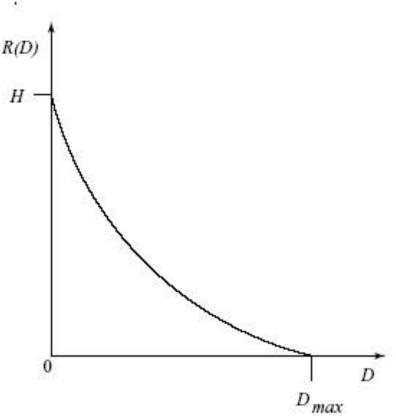
$$\sigma^{2} = \frac{1}{N} \sum_{n=1}^{N} (x_{n} - y_{n})^{2}$$

• Signal to noise ratio (SNR)

$$SNR = 10\log_{10}\frac{\sigma_{\chi}^2}{\sigma_d^2}$$

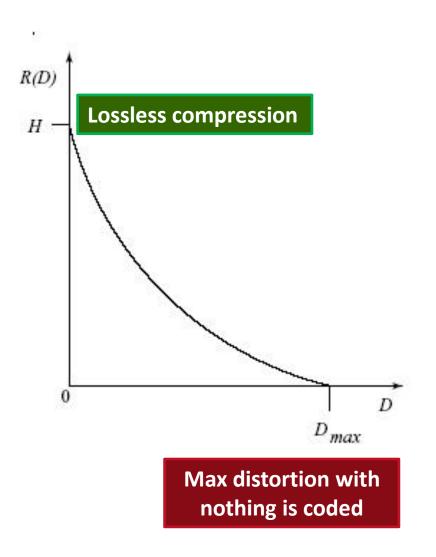
• Peak signal to noise ratio (PSNR)

$$PSNR = 10\log_{10}\frac{x^2_{peak}}{\sigma_d^2}$$


Example of Distortion Measures

- Example data
 - Orginial data: {12 16 16 12 12 8 8 12 }
 - Compressed data: {8 12}
 - Recovered data:{12 12 12 12 12 12 12 12 12 12 12
- Calculation of distortion measures
 - MSE= 8
 - SNR=12.78
 - PSNR=15
 - Typical values for the PSNR in lossy image and video compression are between 30 and 50, where higher is better.

The Rate Distortion Theory


- Lossy compression always
 involves a tradeoff between

 Rate and Distortion
 Rate: Average number of bits
 required to represent each symbol
 If D is a tolerable amount of
 - distortion, R(D) specifies the lowest
 rate at which the source data can
 be encoded while keeping the
 distortion bounded above by D.

The Rate Distortion Theory

- Lossy compression always involves a tradeoff between
 Rate and Distortion
 - Rate: Average number of bits required to represent each symbol
 - If D is a tolerable amount of distortion, R(D) specifies the lowest rate at which the source data can be encoded while keeping the distortion bounded above by D.

Outline

- Lossy Compression
 - Definition
 - Distortion measure
- Quantization
 - Uniform scale quantization
 - Nonuniform scale quantization

Quantization

- Quantization is the heart of any lossy compression scheme
- Reduce the number of distinct output values to a much smaller set
 - Original: { 0,1,2, ... 64 ... 128 ... 192 ... 255 }
 - Smaller set: {0, 64, 128, 192 }
- Two different forms of quantization
 - Partition the domain of input values into equally (unequally) spaced intervals
 - Uniform scalar quantization (equally)
 - Nonuniform scalar quantization (unequally)

Example of Quantization

- Original data
 - Total 64 data D: { d₁, d₂, d₆₄ }
 - Total 16 values X: { 0, 1, 16 }
 - Probabilities of each value f(x):

- Compressed data Y: $\{y_1, y_2, y_3, y_4\}$
 - The number of distinct output values will be decreased from 16 to 4
 - How to choose the boundaries of the intervals and how to choose the values in each intervals

Uniform Scalar Quantization

• Partition the domain of input values into equally spaced intervals

0 1*2 3/4 5*6 7/8 9*10 11/12 13*14 15

- *Y* = {1.5 5.5 9.5 13.5 }
- Example in image compression
 - Divide the RGB cube into equal slides in each dimension
 - R: 3-bit; G: 3-bit; B: 2-bit;

Nonuniform Scalar Quantization

- Partition the domain of input values into unequally spaced intervals
 - Concentrate the bits to where is most need
- Lloyd-Max quantization
 - Try to minimize MSE

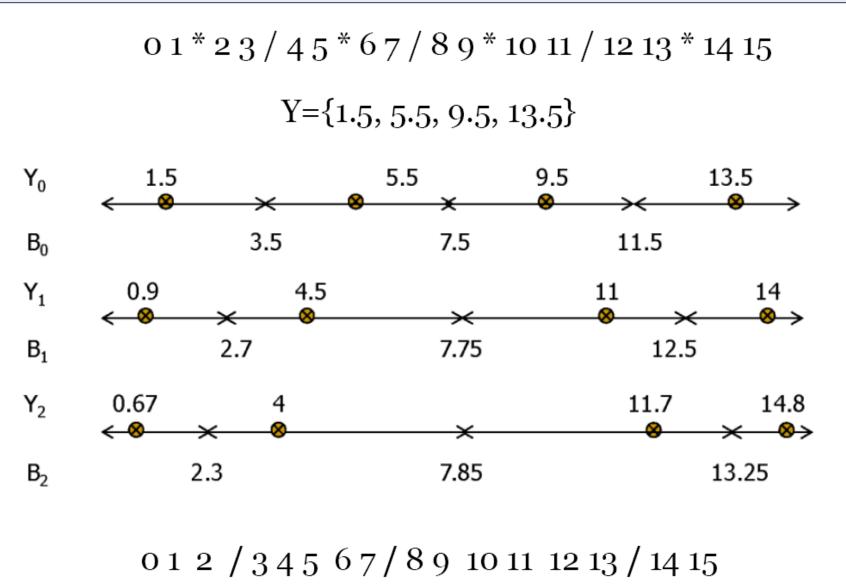
Lloyd-Max Quantization

If the source distribution is not uniform, we must explicitly consider its probability distribution (probability density function)
 f_x(x). Now we need the correct decision boundaries b_i and reconstruction values y_i

Begin

Choose initial level set YO

i = 0;


Repeat

Compute Bi using i = i + 1 Computer Yi using Until | Yi – Yi-1 | < threshold

$$b_{j} = \frac{y_{j+1} + y_{j}}{2}$$
$$y_{j} = \frac{\int_{b_{j-1}}^{b_{j}} xf(x)dx}{\int_{b_{j-1}}^{b_{j}} f(x)dx}$$

End

Lloyd-Max Quantization

Summary

- Lossy Compression
 - Definition
 - Distortion measure
- Quantization
 - Uniform scale quantization
 - Nonuniform scale quantization