
Mobile Development
Lecture 1: JAVA Review

Mahmoud El-Gayyar
elgayyar@ci.suez.edu.eg

Elgayyar.weebly.com

●

●

●

 Variables

variable: A piece of the computer's memory that is given a

name and type, and can store a value.

A variable can be declared/initialized in one statement.

Syntax:
 type name = value;

 double myGPA = 3.95; 

 int x = (11 % 3) + 12;

x 14

myGPA 3.95

 Java's primitive types

 primitive types: 8 simple types for numbers, text, etc.

  Java also has object types, which we'll talk about later

 Name

 int

 double

 char

 boolean

Description

integers

real numbers

single text characters

logical values

Examples

42, -3, 0, 926394

3.1, -0.25, 9.4e3

'a', 'X', '?', '\n'

true, false

●

 Type casting

type cast: A conversion from one type to another.




To promote an int into a double to get exact division from /

To truncate a double from a real number to an integer

● Syntax:

 (type) expression

 Examples:

double result = (double) 19 / 5;

int result2 = (int) result;

int x = (int) Math.pow(10, 3);

// 3.8

// 3

// 1000

 Increment and decrement

shortcuts to increase or decrease a variable's value by 1

Shorthand

variable++;

variable--;

int x = 2;

x++;

double gpa = 2.5;

gpa--;

Equivalent longer version

variable = variable + 1;

variable = variable - 1;

// x = x + 1;

// x now stores 3

// gpa = gpa - 1;

// gpa now stores 1.5

●

 Precedence

precedence: Order in which operators are evaluated.





Generally operators evaluate left-to-right.

1 - 2 - 3 is (1 - 2) - 3 which is -4

But */% have a higher level of precedence than +-

 1 + 3 * 4

6 + 8 / 2 * 3
6 + 4 * 3
6 + 12

 Parentheses can force a certain order of evaluation:

(1 + 3) * 4

 Spacing does not affect order of evaluation

1+3 * 4-2

 String concatenation

 string concatenation: Using + between a string and another value
 to make a longer string.

"hello" + 42 is
1 + "abc" + 2 is
"abc" + 1 + 2 is
1 + 2 + "abc" is
"abc" + 9 * 3 is
"1" + 1 is
4 - 1 + "abc" is

"hello42"

"1abc2"

"abc12"

"3abc"

"abc27"

"11"

"3abc"

 Use + to print a string and an expression's value together.

  System.out.println("Grade: " + (95.1 + 71.9) / 2);

 • Output: Grade: 83.5

●

 Variable scope

scope: The part of a program where a variable exists.
 From its declaration to the end of the { } braces

●

●

A variable declared in a for loop exists only in that loop.

A variable declared in a method exists only in that method.

public static void example() {

 int x = 3;

 for (int i = 1; i <= 10; i++) {
System.out.println(x);

}

 // i no longer exists here

} // x ceases to exist here

x's scope

●

 Class constants

class constant: A value visible to the whole program.




value can only be set at declaration

value can't be changed while the program is running

●
 Syntax:
public static final type name = value;





name is usually in ALL_UPPER_CASE

Examples:

public static final int DAYS_IN_WEEK = 7;

public static final double INTEREST_RATE = 3.5;

public static final int SSN = 658234569;

Passing parameters
● Declaration:

name, ..., type name) { public void name (type

 statement(s);

}

●

●

 Call:
methodName (value, value, ..., value);

 Example:
public static void main(String[] args) {

sayPassword(42);

sayPassword(12345);

// The password is: 42

// The password is: 12345

}

public static void sayPassword(int code) {

 System.out.println("The password is: " + code);

}

●

 Return

return: To send out a value as the result of a method.
 The opposite of a parameter:

●

●

Parameters send information in from the caller to the method.

Return values send information out from a method to its caller.

main

Math.abs(42) -42

Math.round(2.71)

2.71

42

3

Method name

Math.abs(value)

Math.round(value)

Math.ceil(value)

Math.floor(value)

Math.log10(value)

Math.max(value1, value2)

Math.min(value1, value2)

Math.pow(base, exp)

Math.sqrt(value)

Java's Math class
 Description

 absolute value

 nearest whole number

 rounds up

 rounds down

 logarithm, base 10

 larger of two values

 smaller of two values

 base to the exp power

 square root

Math.sin(value)

Math.cos(value)

Math.tan(value)

Math.toDegrees(value)

Math.toRadians(value)

Math.random()

sine/cosine/tangent of
an angle in radians

convert degrees to
radians and back

random double between 0 and 1

Constant

Math.E

Math.PI

Description

2.7182818...

3.1415926...

●

 Returning a value

public type name(parameters) {

 statements;

 ...

 return expression;

}

 Example:

// Returns the slope of the line between the given points.

public double slope(int x1, int y1, int x2, int y2) {

 double dy = y2 - y1;

 double dx = x2 - x1;

 return dy / dx;

}

 Strings

 string: An object storing a sequence of text characters.
 String name = "text";

 String name = expression;

  Characters of a string are numbered with 0-based indexes:

 String name = "P. Diddy";

 The first character's index is always 0

 The last character's index is 1 less than the string's length

 The individual characters are values of type char

2 index

 char

0

P

1

.

3

D

4

i

5

d

6

d

 7

dy

String methods

●
 These methods are called using the dot notation:

String gangsta = "Dr. Dre";
System.out.println(gangsta.length()); // 7

 Method name

indexOf(str)

length()

substring(index1, index2)

or

substring(index1)

toLowerCase()

toUpperCase()

 Description

index where the start of the given string appears in this
string (-1 if it is not there)

number of characters in this string

the characters in this string from index1 (inclusive) to
index2 (exclusive);
if index2 omitted, grabs till end of string

a new string with all lowercase letters

a new string with all uppercase letters

String test methods

String name = console.next();

if (name.startsWith("Dr.")) {

 System.out.println("Are you single?");

} else if (name.equalsIgnoreCase("LUMBERG")) {

 System.out.println("I need your TPS reports.");

}

 Method

equals(str)

equalsIgnoreCase(str)

startsWith(str)

endsWith(str)

contains(str)

 Description

whether two strings contain the same characters

whether two strings contain the same characters, ignoring upper vs.
lower case

whether one contains other's characters at start

whether one contains other's characters at end

whether the given string is found within this one

●

 The equals method

Objects are compared using a method named equals.

 Scanner console = new Scanner(System.in);

 System.out.print("What is your name? ");

 String name = console.next();

 if (name.equals("Barney")) {

 System.out.println("I love you, you love me,");

 System.out.println("We're a happy family!");

 }

 Technically this is a method that returns a value of type boolean,
the type used in logical tests.

 char vs. String

 "h" is a String

 'h' is a char (the two behave differently)

 String is an object; it contains methods

 String s = "h";
s = s.toUpperCase();

int len = s.length();

char first = s.charAt(0);

// 'H'

// 1

// 'H'

 char is primitive; you can't call methods on it

char c = 'h';
c = c.toUpperCase(); // ERROR: "cannot be dereferenced"

●

 if/else

 Executes one block if a test is true, another if false

 if (test) {

 statement(s);
 } else {
 statement(s);
 }

Example:
 double gpa = console.nextDouble();

 if (gpa >= 2.0) {

 System.out.println("Welcome to Mars University!");

 } else {

 System.out.println("Application denied.");

 }

●

 Relational expressions

A test in an if is the same as in a for loop.

 for (int i = 1; i <= 10; i++) { ...

 if (i <= 10) { ...

 These are boolean expressions.

● Tests use relational operators:

Operator

 ==

 !=

 <

 >

 <=

 >=

 Meaning

equals

does not equal

less than

greater than

less than or equal to

greater than or equal to

 Example

1 + 1 == 2

3.2 != 2.5

 10 < 5

 10 > 5

126 <= 100

5.0 >= 5.0

 Value

 true

 true

false

 true

false

 true

●

 Logical operators: &&, ||, !

Conditions can be combined using logical operators:

● "Truth tables" for each, used with logical values p and q:

Operator

 &&

 ||

 !

Description

 and

 or

 not

 Example

(2 == 3) && (-1 < 5)

 (2 == 3) || (-1 < 5)

 !(2 == 3)

 Result

false

 true

 true

p

true

true

false

false

q

true

false

true

false

p && q

true

false

false

false

p || q

true

true

true

false

p

true

false

!p

false

true

if/else Structures
 0 or 1 path:

if (test) {

 statement(s);
} else if (test) {
 statement(s);
} else if (test) {
 statement(s);
}

 Exactly 1 path: (mutually exclusive)

if (test) {

 statement(s);
} else if (test) {
 statement(s);
} else {
 statement(s);
}

 0, 1, or many paths: (independent tests, not exclusive)

if (test) {

 statement(s);
}

if (test) {
 statement(s);
}

if (test) {
 statement(s);
}

●

●

 while loops

while loop: Repeatedly executes its
body as long as a logical test is true.

 while (test) {

 statement(s);
 }

Example:
// initialization

// test

// update

int num = 1;

while (num <= 200) {
 System.out.print(num + " ");

 num = num * 2;
}

 OUTPUT:

1 2 4 8 16 32 64 128

●

 do/while loops

 do/while loop: Executes statements repeatedly while a condition is true,

 testing it at the end of each repetition.

 do {

 statement(s);
 } while (test);

 Example:

 // prompt until the user gets the right password
 String phrase;
 do {
 System.out.print("Password: ");
 phrase = console.next();
 } while (!phrase.equals("abracadabra"));

●

 The Random class

A Random object generates pseudo-random* numbers.
 Class Random is found in the java.util package.

import java.util.*;

 Example:

Random rand = new Random();

int randomNumber = rand.nextInt(10); // 0-9

Method name

nextInt()

nextInt(max)

nextDouble()

Description

returns a random integer

returns a random integer in the range [0, max)

in other words, 0 to max-1 inclusive

returns a random real number in the range [0.0, 1.0)

●

 break

break statement: Immediately exits a loop.




Can be used to write a loop whose test is in the middle.

Such loops are often called "forever" loops because their header's
boolean test is often changed to a trivial true.

while (true) {

 statement(s);

 if (test) {

 break;

 }

 statement(s);
}

 Some programmers consider break to be bad style.

●

 Arrays

array: object that stores many values of the same type.




element: One value in an array.

index: A 0-based integer to access an element from an array.

index

value

 0

12

 1

49

 2

-2

 3

26

4

5

 5

17

 6

-6

 7

84

 8

72

9

3

element 0 element 4 element 9

 Array declaration

type[] name = new type[length];

  Example:

 int[] numbers = new int[10];

index

value

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

Accessing elements

name[index]

name[index] = value;
// access

// modify

 Example:

numbers[0] = 27;

numbers[3] = -6;

System.out.println(numbers[0]);

if (numbers[3] < 0) {

 System.out.println("Element 3 is negative.");

}

index

value

1

0

2

0

4

0

5

0

6

0

7

0

8

0

9

0

 0

27

 3

-6

●

 Out-of-bounds

Legal indexes: between 0 and the array's length - 1.
 Reading or writing any index outside this range will throw an
ArrayIndexOutOfBoundsException.

● Example:
 int[] data = new int[10];

System.out.println(data[0]);

System.out.println(data[9]);

System.out.println(data[-1]);

System.out.println(data[10]);

//

//

//

//

okay

okay

exception

exception

index

value

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

●

 The length field

 An array's length field stores its number of elements.

 name.length

 for (int i = 0; i < numbers.length; i++) {

 System.out.print(numbers[i] + " ");

 }

 // output: ?

 It does not use parentheses like a String's .length().

 Quick array initialization

type[] name = {value, value, … value};

 Example:

 int[] numbers = {12, 49, -2, 26, 5, 17, -6};

 Useful when you know what the array's elements will be.

 The compiler figures out the size by counting the values.

index

value

 0

12

 1

49

 2

-2

 3

26

4

5

 5

17

 6

-6

●

 The Arrays class

Class Arrays in package java.util has useful static
methods for manipulating arrays:

 Method name

binarySearch(array, value)

equals(array1, array2)

fill(array, value)

sort(array)

toString(array)

 Description

returns the index of the given value in a
sorted array (< 0 if not found)

returns true if the two arrays contain the
same elements in the same order

sets every element in the array to have the
given value

arranges the elements in the array into
ascending order

returns a string representing the array, such
as "[10, 30, 17]"

Arrays as parameters
● Declaration:

 public type methodName(type[] name) {

  Example:

 public double average(int[] numbers) {

 ...

 }

 Call:
 methodName(arrayName);

  Example:

 int[] scores = {13, 17, 12, 15, 11};

 double avg = average(scores);

Arrays as return

• Declaring:
public type[] methodName(parameters) {

 Example:

public int[] countDigits(int n) {
int[] counts = new int[10];
...

return counts;
}

• Calling:
type[] name = methodName(parameters);

 Example:

public static void main(String[] args) {
 int[] tally = countDigits(229231007);

System.out.println(Arrays.toString(tally));

}

●

 Value semantics (primitives)

value semantics: Behavior where values are copied when

assigned to each other or passed as parameters.





When one primitive variable is assigned to another,
its value is copied.

Modifying the value of one variable does not affect others.

int

int

y =

x =

x = 5;

y = x;

17;

8;

// x = 5, y = 5

// x = 5, y = 17

// x = 8, y = 17

x

y

●

 Reference semantics (objects)

reference semantics: Behavior where variables actually store
the address of an object in memory.




When one reference variable is assigned to another, the object is not
copied; both variables refer to the same object.

Modifying the value of one variable will affect others.

int[] a1 = {4, 5, 2, 12, 14, 14, 9};

// refer to same array as a1 int[] a2 = a1;

a2[0] = 7;

System.out.println(a1[0]); // 7

index

value

0

4

1

5

2

2

 3

12

 4

14

6

9 7

 5

14

a1

a2

●

 Null

null : A reference that does not refer to any object.





Fields of an object that refer to objects are initialized to null.

The elements of an array of objects are initialized to null.

String[] words = new String[5];
Point[] points = new Point[3];

 3

null

 4

null

 index

 value

index

value

 0

null

 0

null

 1

null

 1

null

 2

null

 2

null

words

points

●

 Null pointer exception

dereference: To access data or methods of an object with the
dot notation, such as s.length().




It is illegal to dereference null (causes an exception).

null is not any object, so it has no methods or data.

String[] words = new String[5];

System.out.println("word is: " + words[0]);

words[0] = words[0].toUpperCase();

Output:
word is: null

Exception in thread "main"
java.lang.NullPointerException

 at Example.main(Example.java:8)

Classes and objects

class: A program entity that represents either:
1. A program / module, or

2. A template for a new type of objects.

 The Point class is a template for creating Point objects.

object: An entity that combines state and behavior.

 object-oriented programming (OOP): Programs that perform their

behavior as interactions between objects.

●

 Fields

field: A variable inside an object that is part of its state.




Each object has its own copy of each field.

encapsulation: Declaring fields private to hide their data.

● Declaration syntax:

 private type name;

 Example:

// each object now has

// a name and gpa field

public class Student {
 private String name;

 private double gpa;
}

●

 Instance methods

instance method: One that exists inside each object of a class
and defines behavior of that object.

 public type name(parameters) {

 statements;

 }

Example:

public void shout() {

 System.out.println("HELLO THERE!");

}

 A Point class

public class Point {

 private int x;

 private int y;

 // Changes the location of this Point object.

 public void draw(Graphics g) {

 g.fillOval(x, y, 3, 3);

 g.drawString("(" + x + ", " + y + ")", x, y);

 }

}





Each Point object contains data fields named x and y.

Each Point object contains a method named draw that draws that

point at its current x/y position.

●

 The implicit parameter

implicit parameter:

The object on which an instance method is called.







During the call p1.draw(g);

the object referred to by p1 is the implicit parameter.

During the call p2.draw(g);

the object referred to by p2 is the implicit parameter.

The instance method can refer to that object's fields.
●

●

We say that it executes in the context of a particular object.

draw can refer to the x and y of the object it was called on.

●

 Kinds of methods

Instance methods take advantage of an object's state.
 Some methods allow clients to access/modify its state.

● accessor: A method that lets clients examine object state.




Example: A distanceFromOrigin method that tells how far a
Point is away from (0, 0).

Accessors often have a non-void return type.

● mutator: A method that modifies an object's state.
 Example: A translate method that shifts the position of a Point

by a given amount.

Example:

●

 Constructors

constructor: Initializes the state of new objects.

 public type(parameters) {

 statements;
 }

 

 public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }







runs when the client uses the new keyword

does not specify a return type; implicitly returns a new object

If a class has no constructor, Java gives it a default constructor with no

parameters that sets all fields to 0.

●

 toString method

tells Java how to convert an object into a String
 public String toString() {

 code that returns a suitable String;

 }

 Example:

●

●

 public String toString() {
 return "(" + x + ", " + y + ")";
 }

called when an object is printed/concatenated to a String:
 Point p1 = new Point(7, 2);

 System.out.println("p1: " + p1);

Every class has a toString, even if it isn't in your code.
 Default is class's name and a hex number: Point@9e8c34

●

 this keyword

this : A reference to the implicit parameter.
 implicit parameter: object on which a method is called

● Syntax for using this:

 To refer to a field:

this.field

 To call a method:

this.method(parameters);

 To call a constructor from another constructor:

this(parameters);

●

 Static methods

static method: Part of a class, not part of an object.








shared by all objects of that class

good for code related to a class but not to each object's state

does not understand the implicit parameter, this;

therefore, cannot access an object's fields directly

if public, can be called from inside or outside the class

● Declaration syntax:

 public static type name(parameters) {

 statements;

 }

●

 Inheritance

inheritance: A way to form new classes based on existing
classes, taking on their attributes/behavior.




a way to group related classes

a way to share code between two or more classes

● One class can extend another, absorbing its data/behavior.




superclass: The parent class that is being extended.

subclass: The child class that extends the superclass and inherits its
behavior.
● Subclass gets a copy of every field and method from superclass

Inheritance syntax

public class name extends superclass {

 Example:

public class Secretary extends Employee {

...

}

●

 Overriding methods

override: To write a new version of a method in a subclass that
replaces the superclass's version.
 No special syntax required to override a superclass method.

Just write a new version of it in the subclass.

public class Secretary extends Employee {

 // overrides getVacationForm in Employee

 public String getVacationForm() {

 return "pink";

 }

 ...

}

●

 super keyword

 Subclasses can call overridden methods with super

 super.method(parameters)

 Example:
 public class LegalSecretary extends Secretary {

 public double getSalary() {
 double baseSalary = super.getSalary();
 return baseSalary + 5000.0;
 }

 ...

 }

●

 Polymorphism

polymorphism: Ability for the same code to be used with

different types of objects and behave differently with each.
 Example: System.out.println can print any type of object.

 Each one displays in its own way on the console.

●

●

 A variable of type T can hold an object of any subclass of T.

 Employee ed = new LegalSecretary();

 You can call any methods from Employee on ed.

 You can not call any methods specific to LegalSecretary.

 When a method is called, it behaves as a LegalSecretary.
System.out.println(ed.getSalary());

System.out.println(ed.getVacationForm());

// 55000.0

// pink

●

●

 Throwing exceptions

 throw new ExceptionType();

 throw new ExceptionType("message");

Generates an exception that will crash the program,

unless it has code to handle ("catch") the exception.

Common exception types:
 ArithmeticException, ArrayIndexOutOfBoundsException, FileNotFoundException,

IllegalArgumentException, IllegalStateException, IOException, NoSuchElementException,
NullPointerException, RuntimeException, UnsupportedOperationException

● Why would anyone ever want a program to crash?

●

 Collections and lists

collection: an object that stores data ("elements")
import java.util.*; // to use Java's collections

● list: a collection of elements with 0-based indexes






elements can be added to the front, back, or elsewhere

a list has a size (number of elements that have been added)

in Java, a list can be represented as an ArrayList object

●

●

●

 Idea of a list

An ArrayList is like an array that resizes to fit its contents.

When a list is created, it is initially empty.

 []

You can add items to the list. (By default, adds at end of list)

 [hello, ABC, goodbye, okay]





The list object keeps track of the element values that have been added
to it, their order, indexes, and its total size.

You can add, remove, get, set, ... any index at any time.

 Type parameters (generics)

ArrayList<Type> name = new ArrayList<Type>();

● When constructing an ArrayList, you must specify the
type of its elements in < >




This is called a type parameter ; ArrayList is a generic class.

Allows the ArrayList class to store lists of different types.

ArrayList<String> names = new ArrayList<String>();

names.add("Marty Stepp");

names.add("Stuart Reges");

ArrayList methods

add(value)

add(index, value)

clear()

indexOf(value)

get(index)

remove(index)

set(index, value)

size()

toString()

appends value at end of list

inserts given value just before the given index,

shifting subsequent values to the right

removes all elements of the list

returns first index where given value is found in list

(-1 if not found)

returns the value at given index

removes/returns value at given index, shifting

subsequent values to the left

replaces value at given index with given value

returns the number of elements in list

returns a string representation of the list

such as "[3, 42, -7, 15]"

ArrayList vs. array

String[] names = new String[5];

names[0] = "Jessica";

String s = names[0];

for (int i = 0; i < names.length; i++) {

 if (names[i].startsWith("B")) { ... }

}

// construct

// store

// retrieve

// iterate

ArrayList<String> list = new ArrayList<String>();

list.add("Jessica");

String s = list.get(0);

// store

// retrieve

for (int i = 0; i < list.size(); i++) {

 if (list.get(i).startsWith("B")) { ... }

} // iterate

ArrayList as param/return

public void name(ArrayList<Type> name) { // param

public ArrayList<Type> name(params) // return

●

 Example:

// Returns count of plural words in the given list.

public int countPlural(ArrayList<String> list) {

 int count = 0;

 for (int i = 0; i < list.size(); i++) {

 String str = list.get(i);

 if (str.endsWith("s")) {

 count++;

 }

 }

 return count;

}

 The "for each" loop

for (type name : collection) {

 statements;
}

●

 Provides a clean syntax for looping over the elements of a
 List, array, or other collection

ArrayList<Double> grades = new ArrayList<Double>();
...

for (double grade : grades) {

 System.out.println("Student's grade: " + grade);

}

●

 Maps

map: Holds a set of unique keys and a collection of values, where

each key is associated with one value.
 a.k.a. "dictionary", "associative array", "hash"

● basic map operations:







put(key, value): Adds a
mapping from a key to
a value.

get(key): Retrieves the
value mapped to the key.

remove(key): Removes
the given key and its
mapped value.

myMap.get("Juliet") returns "Capulet"

●

 Map implementation

in Java, maps are represented by Map type in java.util

•Map is implemented by the HashMap and TreeMap classes

 – HashMap: implemented using an array called a "hash table";

 extremely fast: O(1) ; keys are stored in unpredictable order

 – TreeMap: implemented as a linked "binary tree" structure;

 very fast: O(log N) ; keys are stored in sorted order

 – LinkedHashMap: O(1) ; keys are stored in order of insertion

● A map requires 2 type params: one for keys, one for values.

// maps from String keys to Integer values

Map<String, Integer> votes = new HashMap<String, Integer>();

put(key, value)

get(key)

containsKey(key)

remove(key)

clear()

size()

isEmpty()

toString()

keySet()

values()

putAll(map)

equals(map)

 Map methods

adds a mapping from the given key to the given value;

if the key already exists, replaces its value with the given one

returns the value mapped to the given key (null if not found)

returns true if the map contains a mapping for the given key

removes any existing mapping for the given key

removes all key/value pairs from the map

returns the number of key/value pairs in the map

returns true if the map's size is 0

returns a string such as "{a=90, d=60, c=70}"

returns a set of all keys in the map

returns a collection of all values in the map

adds all key/value pairs from the given map to this map

returns true if given map has the same mappings as this one

●

 Using maps

A map allows you to get from one half of a pair to the other.


 Later, we can supply only the key and get back the related value:
 Allows us to ask: What is Suzy's phone number?

 get("Suzy")

 Map

 "206-685-2181"

Map

Remembers one piece of information about every index (key).

 // key value

put("Suzy", "206-685-2181")

 keySet and values

•keySet method returns a Set of all keys in the map




can loop over the keys in a foreach loop

can get each key's associated value by calling get on the map

 Map<String, Integer> ages = new TreeMap<String, Integer>();
 ages.put("Marty", 19);
 ages.put("Geneva", 2); // ages.keySet() returns Set<String>
 ages.put("Vicki", 57);
 for (String name : ages.keySet()) { // Geneva -> 2
 int age = ages.get(name); // Marty -> 19
 System.out.println(name + " -> " + age); // Vicki -> 57
 }

•values method returns a collection of all values in the map




can loop over the values in a foreach loop

no easy way to get from a value to its associated key(s)

●

 The compareTo method

The standard way for a Java class to define a comparison

function for its objects is to define a compareTo method.

 Example: in the String class, there is a method:

●

 public int compareTo(String other)

A call of A.compareTo(B) will return:

a value < 0

a value > 0

if A comes "before" B in the ordering,

if A comes "after" B in the ordering,

or 0 if A and B are considered "equal" in the ordering.

 Using compareTo

•compareTo can be used as a test in an if statement.

 String a = "alice";

 String b = "bob";
// true if (a.compareTo(b) < 0) {

 ...

}

 Primitives

if (a < b) { ...

if (a <= b) { ...

if (a == b) { ...

if (a != b) { ...

if (a >= b) { ...

if (a > b) { ...

 Objects

if (a.compareTo(b) < 0) { ...

if (a.compareTo(b) <= 0) { ...

if (a.compareTo(b) == 0) { ...

if (a.compareTo(b) != 0) { ...

if (a.compareTo(b) >= 0) { ...

if (a.compareTo(b) > 0) { ...

●

 compareTo and collections

 You can use an array or list of strings with Java's included binary

 search method because it calls compareTo internally.

String[] a = {"al", "bob", "cari", "dan", "mike"};
int index = Arrays.binarySearch(a, "dan"); // 3

●

 Java's TreeSet/Map use compareTo internally for ordering.

Set<String> set = new TreeSet<String>();

for (String s : a) {

 set.add(s);

}

System.out.println(s);

// [al, bob, cari, dan, mike]

●

 Ordering our own types

We cannot binary search or make a TreeSet/Map of arbitrary

types, because Java doesn't know how to order the elements.

 The program compiles but crashes when we run it.

Set<HtmlTag> tags = new TreeSet<HtmlTag>();

tags.add(new HtmlTag("body", true));

tags.add(new HtmlTag("b", false));

...

Exception in thread "main" java.lang.ClassCastException

 at java.util.TreeSet.add(TreeSet.java:238)

 Comparable

public interface Comparable<E> {

 public int compareTo(E other);
}

●

●

 A class can implement the Comparable interface to define a
 natural ordering function for its objects.

 A call to your compareTo method should return:

a value < 0 if this object comes "before" the other object,

a value > 0 if this object comes "after" the other object,

or0 if this object is considered "equal" to the other.

• If you want multiple orderings, use a Comparator instead (see Ch. 13.1)

 Comparable example

public class Point implements Comparable<Point> {

 private int x;
 private int y;
 ...

// sort by x and break ties by y
public int compareTo(Point other) {
 if (x < other.x) {
 return -1;
 } else if (x > other.x) {
 return 1;
 } else if (y < other.y) {
 return -1; // same x, smaller y
 } else if (y > other.y) {
 return 1; // same x, larger y
 } else {
 return 0; // same x and same y
 }

}
}

Collections class

 Method name

binarySearch(list, value)

copy(listTo, listFrom)

emptyList(), emptyMap(),

emptySet()

fill(list, value)

max(collection), min(collection)

replaceAll(list, old, new)

reverse(list)

shuffle(list)

sort(list)

 Description

returns the index of the given value in a

sorted list (< 0 if not found)

copies listFrom's elements to listTo

returns a read-only collection of the given

type that has no elements

sets every element in the list to have the

given value

returns largest/smallest element

replaces an element value with another

reverses the order of a list's elements

arranges elements into a random order

arranges elements into ascending order

●

 Sorting methods in Java

 The Arrays and Collections classes in java.util have

 a static method sort that sorts the elements of an array/list

String[] words = {"foo", "bar", "baz", "ball"};

Arrays.sort(words);

System.out.println(Arrays.toString(words));

// [ball, bar, baz, foo]

List<String> words2 = new ArrayList<String>();

for (String word : words) {

 words2.add(word);

}

Collections.sort(words2);

System.out.println(words2);

// [ball, bar, baz, foo]

●

 Recall: Inheritance

inheritance: Forming new classes based on existing ones.




superclass: Parent class being extended.

subclass: Child class that inherits behavior from superclass.
● gets a copy of every field and method from superclass

●

override: To replace a superclass's method by writing a new
version of that method in a subclass.

 public class Lawyer extends Employee {

 // overrides getSalary in Employee; a raise!

 public double getSalary() {

 return 55000.00;

 }

 }

 The super keyword

 super.method(parameters)

 super(parameters);

– Subclasses can call overridden methods/constructors with super

 public class Lawyer extends Employee {

 private boolean passedBarExam;

 public Lawyer(int vacationDays, boolean bar) {

 super(vacationDays * 2);

 this.passedBarExam = bar;

 }

public double getSalary() {
 double baseSalary = super.getSalary();
 return baseSalary + 5000.00; // $5K raise
}

...

}

●

 The class Object

The class Object forms the root of the

overall inheritance tree of all Java classes.
 Every class is implicitly a subclass of Object

●
 The Object class defines several methods
 that become part of every class you write.
 For example:

– public String toString()

 Returns a text representation of the object,
 usually so that it can be printed.

Object methods

 What does this list of methods tell you about Java's design?

 method

protected Object clone()

public boolean equals(Object o)

protected void finalize()

public Class<?> getClass()

public int hashCode()

public String toString()

 description

creates a copy of the object

returns whether two objects have
the same state

used for garbage collection

info about the object's type

a code suitable for putting this
object into a hash collection

text representation of object

public

public

public

public

void

void

void

void

notify()

notifyAll()

wait()

wait(...)

methods related to concurrency
and locking (seen later)

●

●

●

 Using the Object class

 You can store any object in a variable of type Object.

Object o1 = new Point(5, -3);

Object o2 = "hello there";

 You can write methods that accept an Object parameter.

public void checkNotNull(Object o) {

 if (o != null) {
 throw new IllegalArgumentException();
 }

 You can make arrays or collections of Objects.

Object[] a = new Object[5];

a[0] = "hello";
a[1] = new Random();
List<Object> list = new ArrayList<Object>();

●

 Recall: comparing objects

The == operator does not work well with objects.




It compares references, not objects' state.

It produces true only when you compare an object to itself.

Point p1 = new Point(5, 3);

Point p2 = new Point(5, 3);

Point p3 = p2;

// p1 == p2 is false;

// p1 == p3 is false;

// p2 == p3 is true

// p1.equals(p2)?

// p2.equals(p3)?

p1

p2

...

 x

...

 x

5

5

y

y

3

3

p3

●

●

 Default equals method

 The Object class's equals implementation is very simple:

public class Object {
 ...

 public boolean equals(Object o) {
 return this == o;
 }

}

 However:




When we have used equals with various objects, it didn't behave like
== . Why not? if (str1.equals(str2)) { ...

The Java API documentation for equals is elaborate. Why?

 Implementing equals

public boolean equals(Object name) {

 statement(s) that return a boolean value ;

}





The parameter to equals must be of type Object.

Having an Object parameter means any object can be passed.
● If we don't know what type it is, how can we compare it?

 Casting references

Object o1 = new Point(5, -3);
Object o2 = "hello there";

((Point) o1).translate(6, 2);
int len = ((String) o2).length();
Point p = (Point) o1;
int x = p.getX();

// ok
// ok

// ok

● Casting references is different than casting primitives.






Really casting an Object reference into a Point reference.

Doesn't actually change the object that is referred to.

Tells the compiler to assume that o1 refers to a Point object.

 The instanceof keyword

if (variable instanceof type) {

 statement(s);

 }

• Asks if a variable refers

 to an object of a given type.
 – Used as a boolean test.

 String s = "hello";

 Point p = new Point();

 expression

s instanceof Point

s instanceof String

p instanceof Point

p instanceof String

p instanceof Object

s instanceof Object

null instanceof String

null instanceof Object

 result

false

true

true

false

true

true

false

false

equals method for Points

// Returns whether o refers to a Point object with

// the same (x, y) coordinates as this Point.

public boolean equals(Object o) {

if (o instanceof Point) {

// o is a Point; cast and compare it

Point other = (Point) o;

return x == other.x && y == other.y;

} else {

// o is not a Point; cannot be equal

return false;

 }

}

●

●

 More about equals

 Equality is expected to be reflexive, symmetric, and transitive:

 a.equals(a) is true for every object a

 a.equals(b) ↔ b.equals(a)

(a.equals(b) && b.equals(c)) ↔ a.equals(c)

 No non-null object is equal to null:

 a.equals(null) is false for every object a

●

 The hashCode method

 public int hashCode()

 Returns an integer hash code for this object, indicating its preferred to
 place it in a hash table / hash set.

  Allows us to store non-int values in a hash set/map:

 public static int hashFunction(Object o) {

 return Math.abs(o.hashCode()) % elements.length;

 }

How is hashCode implemented?
 Depends on the type of object and its state.

● Example: a String's hashCode adds the ASCII values of its letters.

 You can write your own hashCode methods in classes you write.
● All classes come with a default version based on memory address.

●

●

 Polymorphism

 polymorphism: Ability for the same code to be used with

 different types of objects and behave differently with each.

 A variable or parameter of type T can refer to any subclass of T.

 Employee ed = new Lawyer();

 Object otto = new Secretary();

– When a method is called on ed, it behaves as a Lawyer.

  You can call any Employee methods on ed.
 You can call any Object methods on otto.

● You can not call any Lawyer-only methods on ed (e.g. sue).
You can not call any Employee methods on otto (e.g. getHours).

 Polymorphism examples

•You can use the object's extra functionality by casting.

 Employee ed = new Lawyer();

ed.getVacationDays();

ed.sue();

((Lawyer) ed).sue();

// ok

// compiler error

// ok

•You can't cast an object into something that it is not.

 Object otto = new Secretary();

System.out.println(otto.toString());

otto.getVacationDays();

((Employee) otto).getVacationDays();

((Lawyer) otto).sue();

//

//

//

//

ok

compiler error

ok

runtime error

