
Mobile Development
Lecture 8: Intents and Animation

Mahmoud El-Gayyar
elgayyar@ci.suez.edu.eg

Elgayyar.weebly.com

1. Multiple Activities Intents

Mahmoud El-Gayyar / Mobile Development 3

 Many apps have multiple activities.

 Example: In an address book app, the main activity is a list of contacts, and

clicking on a contact goes to another activity for viewing details.

 An activity A can launch another activity B in response to an event.

 The activity A can pass data to B.

 The second activity B can send data back to A when it is done.

Multiple Activities

Mahmoud El-Gayyar / Mobile Development 4

 in Android Studio, right click "app" at left: New -> Activity

 creates a new .XML file in res/layouts

 creates a new .java class in src/java

 adds information to AndroidManifest.xml about the activity

 (without this information, the app will not allow the activity)

 Adding an Activity

Mahmoud El-Gayyar / Mobile Development 5

Activities in Manifest
 Every activity has an entry in project's AndroidManifest.xml, added

automatically by Android Studio:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.myusername.myapplication" >

 <application android:allowBackup="true" android:icon="@drawable/ic_launcher"

 android:label="@string/app_name“ android:theme="@style/AppTheme" >

 <activity android:name=".MainActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity android:name=".SecondActivity"

 android:label="@string/title_activity_second"

 android:parentActivityName=".SecondActivity" >

 <meta-data android:name="android.support.PARENT_ACTIVITY"

 android:value="com.example.myusername.myapplication.MainActivity" />

 </activity>

 </application>

</manifest>

Mahmoud El-Gayyar / Mobile Development 6

 intent: a bridge between activities; a way for one activity to invoke another

 the activity can be in the same app or in a different app

 can store extra data to pass as "parameters" to that activity

 second activity can "return" information back to the caller if needed

Intents

Mahmoud El-Gayyar / Mobile Development 7

 To launch another activity (usually in response to an event),

create an Intent object and call startActivity with it:

 If you need to pass any parameters or data to the second

activity, call putExtra on the intent.

 It stores "extra" data as key/value pairs, not unlike a Map.

Creating an Intent

Intent intent = new Intent(this, ActivityName.class);

startActivity(intent);

Intent intent = new Intent(this, ActivityName.class);

intent.putExtra("name", value);

intent.putExtra("name", value);

startActivity(intent);

Mahmoud El-Gayyar / Mobile Development 8

 In the second activity that was invoked, you can grab any extra

data that was passed to it by the calling act.

 You can access the Intent by calling getIntent.

 The Intent has methods like getExtra, getIntExtra, getStringExtra, etc. to

extract any data that was stored inside the intent.

Extracting Extra Data

public class SecondActivity extends Activity {

 public void onCreate(Bundle savedState) {

 super.onCreate(savedState);

 setContentView(R.layout.activity_second);

 Intent intent = getIntent();

 String extra = intent.getExtra("name");

 ...

 }

}

Mahmoud El-Gayyar / Mobile Development 9

 If calling activity wants to wait for a result from called activity:

 Call startActivityForResult rather than startActivity.

 startActivityForResult requires you to pass a unique ID number to represent the action

being performed.

 By convention, you declare a final int constant with a value of your choice. The call to

startActivityForResult will not wait; it will return immediately.

 Write an onActivityResult method that will be called when the second

activity is done.

 Check for your unique ID as was passed to startActivityForResult.

 If you see your unique ID, you can ask the intent for any extra data.

 Modify the called activity to send a result back

 Use its setResult and finish methods to end the called activity.

Waiting for a Result

Mahmoud El-Gayyar / Mobile Development 10

 In the second activity that was invoked, send data back:

 Need to create an Intent to go back.

 Store any extra data in that intent; call setResult and finish.

Sending Back a Result

public class SecondActivity extends Activity {

 ...

 public void myOnClick(View view) {

 Intent intent = new Intent();

 intent.putExtra("name", value);

 setResult(RESULT_OK, intent);

finish(); // calls onDestroy

}

}

Mahmoud El-Gayyar / Mobile Development 11

Grabbing the Result
private static final int REQ_CODE = 123; // MUST be 0-65535

public void myOnClick(View view) {
 Intent intent = getIntent(this, SecondActivity.class);

 startActivityForResult(intent, REQ_CODE);

}

protected void onActivityResult(int requestCode,

 int resultCode, Intent intent) {

 super.onActivityResult(requestCode, resultCode, intent);

 if (requestCode == REQ_CODE) {

 // came back from SecondActivity

 String data = intent.getStringExtra("name");

 Toast.makeText(this, "Got back: " + data,

 Toast.LENGTH_SHORT).show();

 }

}
}

Mahmoud El-Gayyar / Mobile Development 12

Implicit Intent
 implicit intent: One that launches another app, without naming

that specific app, to handle a given type of request or action.

 examples: invoke default browser; load music player to play a song

// make a phone call

Uri number = Uri.parse("tel:5551234");

Intent callIntent = new Intent(Intent.ACTION_DIAL, number);

// go to a web page in the default browser

Uri webpage = Uri.parse("http://www.stanford.edu/");

Intent webIntent = new Intent(Intent.ACTION_VIEW, webpage);

// open a map pointing at a given latitude/longitude (z=zoom)

Uri location = Uri.parse("geo:37.422219,-122.08364?z=14");

Intent mapIntent = new Intent(Intent.ACTION_VIEW, location);

Mahmoud El-Gayyar / Mobile Development 13

Activities and Action Bar
 action bar: A top-level menu of actions in an activity.

 identifies current activity/app to user

 If your activity is specified to have a "parent" activity on

creation and in AndroidManifest.xml, you will have a

"back" button to return to the calling activity.

2. Animation

Mahmoud El-Gayyar / Mobile Development 15

 Property Animations - The most powerful and flexible animation

system introduced in Android 3.0.

 View Animations - Slower and less flexible; deprecated since

property animations were introduced

 Transition Animations - For Android 4.4 devices and above, the

Transitions API framework enables layout changes within an

activity. Using the design support library.

Types of Animation Frameworks

Mahmoud El-Gayyar / Mobile Development 16

 Property Animations - This is the animation of any property between two

values. (rotating an image or fading out a button)

 Activity Transitions - Animates the transition as an Activity enters the screen

 Fragment Transitions - Animates the transition as a fragment enters or exits the

screen

 Layout Animations - This allows us to enable animations on any layout

container or other ViewGroup such as LinearLayout, RelativeLayout, or ListView.

Using the Transitions API (for Android 4.4 devices and above), the animations to

the view changes can be specified. For lower versions, layout animations can

still be enabled, but there is no way to dictate how the transitions occur.

 Drawable Animations - Used to animate by displaying drawables in quick

succession

Types of Animations

Mahmoud El-Gayyar / Mobile Development 17

Property Animations

Property Description

alpha Fade in or out

rotation, rotationX, rotationY Spin or flip

scaleX, scaleY Grow or shrink

x, y, z Position

translationX, translationY, translationZ
(API 21+)

Offset from Position

Mahmoud El-Gayyar / Mobile Development 18

 Can apply on different widgets

 Button, Images, …

 component.animate().alpha(0f).setDuration(2000);

 Time in milliseconds

 Alpha between 0 – 1

 Use setAlpha() method to change alpha

 before animation

 Using ObjectAnimator

Fading Animation (Property)

ObjectAnimator fadeAnim = ObjectAnimator.ofFloat(tvLabel, "alpha", 0.2f);

fadeAnim.start();

ObjectAnimator fadeAltAnim = ObjectAnimator.ofFloat(image, View.ALPHA, 0, 1);

fadeAltAnim.start();

Mahmoud El-Gayyar / Mobile Development 19

Setting Duration or Repeat or Interpolation

ObjectAnimator scaleAnim = ObjectAnimator.ofFloat(tvLabel, "scaleX", 1.0f, 2.0f);

scaleAnim.setDuration(3000);

scaleAnim.setRepeatCount(ValueAnimator.INFINITE);

scaleAnim.setRepeatMode(ValueAnimator.REVERSE); // or restart

scaleAnim.start();

ObjectAnimator moveAnim = ObjectAnimator.ofFloat(v, "Y", 1000);

moveAnim.setDuration(2000);

moveAnim.setInterpolator(new BounceInterpolator());

 moveAnim.start();

Mahmoud El-Gayyar / Mobile Development 20

Common Interpolators

Name Description

AccelerateInterpolator
Rate of change starts out slowly and and
then accelerates

BounceInterpolator Change bounces right at the end

DecelerateInterpolator
Rate of change starts out quickly and and
then decelerates

LinearInterpolator Rate of change is constant throughout

https://developer.android.com/reference/android/animation/TimeInterpolator.html

Mahmoud El-Gayyar / Mobile Development 21

Listening to the Animation Lifecycle
 We can add an AnimatorListenerAdapter to manage events during the

animation lifecycle such as onAnimationStart or onAnimationEnd:

ObjectAnimator anim = ObjectAnimator.ofFloat(v, "alpha", 0.2f);

anim.addListener(new AnimatorListenerAdapter() {

@Override

public void onAnimationEnd(Animator animation) {

 Toast.makeText(MainActivity.this, “End!”, Toast.LENGTH_SHORT).show();

 }

});

anim.start();

Mahmoud El-Gayyar / Mobile Development 22

Multiple Animations
 We can play multiple ObjectAnimator objects together concurrently with the

AnimatorSet with:

AnimatorSet set = new AnimatorSet();

set.playTogether(

 ObjectAnimator.ofFloat(tvLabel, "scaleX", 1.0f, 2.0f)

 .setDuration(2000),

 ObjectAnimator.ofFloat(tvLabel, "scaleY", 1.0f, 2.0f)

 .setDuration(2000),

 ObjectAnimator.ofObject(tvLabel, "backgroundColor", new ArgbEvaluator(),

 /*Red*/0xFFFF8080, /*Blue*/0xFF8080FF)

 .setDuration(2000)

);

set.start();

Mahmoud El-Gayyar / Mobile Development 23

Using XML
 We can also use property animations from XML.

 create an XML file that describes the object property animation we want to run. F

 or example, if we wanted to animate a fade out for a button, we could add this file to

res/animator/fade_out.xml

<?xml version="1.0" encoding="utf-8"?>

<objectAnimator

xmlns:android="http://schemas.android.com/apk/res/android"

android:propertyName="alpha"

android:duration="1000"

android:valueTo="0" />

Animator anim = AnimatorInflater.loadAnimator(this,

 R.animator.fade_out);

anim.setTarget(btnExample);

anim.start();

Mahmoud El-Gayyar / Mobile Development 24

Challenge

Mahmoud El-Gayyar / Mobile Development 25

Activity Transitions
 Animations and transitions for Activities as they become visible on screen

 After executing an intent with startActivity, you call the overridePendingTransition

Intent i = new Intent(MainActivity.this, SecondActivity.class);

startActivity(i);

overridePendingTransition(R.anim.right_in, R.anim.left_out);

 The first parameter is the "enter" animation for the launched activity and the second

is the "exit" animation for the current activity.

 You can call on Activity exist also (e.g. after finish() method)

Mahmoud El-Gayyar / Mobile Development 26

Layout Animation - 1
 A particular animation can be specified when the layout first appears on screen.

This can be done by using the android:layoutAnimation property to specify an

animation to execute.

 First, let's define an animation we'd like to use when the views in the layout appear

on the screen in res/anim/slide_right.xml which defines sliding in right from outside

the screen:

<set xmlns:android="http://schemas.android.com/apk/res/android"

 android:interpolator="@android:anim/accelerate_interpolator">

 <translate android:fromXDelta="-100%p" android:toXDelta="0"

 android:duration="1000" />

</set>

Mahmoud El-Gayyar / Mobile Development 27

Layout Animation - 2
 and now we need to create a special layoutAnimation which references that

animation:

<?xml version="1.0" encoding="utf-8"?>

<layoutAnimation

xmlns:android="http://schemas.android.com/apk/res/android"

 android:animation="@anim/slide_right"

/>

 and now we need to apply this layoutAnimation to our Layout or ViewGroup:

<LinearLayout

 ...

 android:layoutAnimation="@anim/layout_slide_in_from_right" />

https://dzone.com/articles/android-ui-action-layout
https://dzone.com/articles/android-ui-action-layout
http://android-er.blogspot.com.eg/2009/10/layout-animation.html
http://android-er.blogspot.com.eg/2009/10/layout-animation.html

Mahmoud El-Gayyar / Mobile Development 28

Animated Images
 In certain cases, we want to be able to display animated images such as an simple

animated GIF. The underlying class for making this happen is called AnimationDrawable

which is an XML format for describing a sequence of images to display.

 One of the simplest ways to display an animated gif is to use a third-party library.

 First, let's add Glide to our app/build.gradle file:

dependencies {

 ...

 compile 'com.github.bumptech.glide:glide:3.6.0'

}

 Next, setup an ImageView in the the activity (@+id/ivGif)

 For local GIFs, be sure to put an animated gif into the res/raw

Mahmoud El-Gayyar / Mobile Development 29

Load GIF with Glide

protected void onCreate(Bundle savedInstanceState) {

 …

 // Find the ImageView to display the GIF

 ImageView ivGif = (ImageView) findViewById(R.id.ivGif);

 // Display the GIF (from raw resource) into the ImageView

 Glide.with(this).load(R.raw.my_gif).asGif().into(imageView);

 // OR even download from the network

 Glide.with(this).load("https://i.imgur.com/l9lffwf.gif").asGif().into(imageView);

 }

}

