
Mobile Development 
Lecture 6: The Activity Lifecycle 

Mahmoud El-Gayyar 
elgayyar@ci.suez.edu.eg 

Elgayyar.weebly.com 

 



Mahmoud El-Gayyar / Mobile Development      2  

 storage: Your device has apps and files installed and 

stored on its internal disk, SD card, etc. 

 Settings  Storage 

 memory: Some subset of apps might be currently loaded 

into the device's RAM and are either running or ready to 

be run. 

 When the user loads an app, it is loaded from storage into 

memory. 

 When the user exits an app, it might be cleared from 

memory, or might remain in memory so you can go back to it 

later. 

 See which apps are in memory: 

 Settings  Apps  Running 

 

Apps, Memory, and Storage 



Mahmoud El-Gayyar / Mobile Development      3  

 An activity can be thought of as being in one of several states: 

 starting: In process of loading up, but not fully loaded. 

 running: Done loading and now visible on the screen. 

 paused: Partially obscured or out of focus, but not shut down. 

 stopped: No longer active, but still in the device's active memory. 

 destroyed: Shut down and no longer currently loaded in memory. 

 Transitions between these states are represented by events that 

you can listen to in your activity code. 

 onCreate, onPause, onResume, onStop, onDestroy, ... 

 

 

Activity State 



Mahmoud El-Gayyar / Mobile Development      4  

Activity Lifecycle 1 



Mahmoud El-Gayyar / Mobile Development      5  

Activity Lifecycle 2 



Mahmoud El-Gayyar / Mobile Development      6  

 In onCreate, you create and set up the 

activity object, load any static resources like 

images, layouts, set up menus etc. 

 after this, the Activity object exists 

 think of this as the "constructor" of the activity  

The onCreate Method 

public  class  FooActivity  extends  Activity  { 

 ... 

 public  void  onCreate(Bundle  savedInstanceState)  { 

super.onCreate(savedInstanceState); //  always  call  super 

setContentView(R.layout.activity_foo);             //  set  up  layout 

any  other  initialization  code; //  anything  else  you  need 

} 

} 



Mahmoud El-Gayyar / Mobile Development      7  

 When onPause is called, your activity is still 

partially visible. 

 May be temporary, or on way to termination. 

 Stop animations or other actions that consume CPU. 

 Commit unsaved changes (e.g. draft email). 

 Release system resources that affect battery life. 

The onPause Method 

//  always  call  super 
 
 
 

//  release  resources 

public  void  onPause()  { 

 super.onPause(); 

 if  (myConnection  !=  null)  { 

  myConnection.close(); 

  myConnection  =  null; 

 } 

} 



Mahmoud El-Gayyar / Mobile Development      8  

 When onResume is called, your activity is coming out 

of the Paused state and into the Running state again. 

 Also called when activity is first created/loaded! 

 Initialize resources that you will release in onPause. 

 Start/resume animations or other ongoing actions that 

should only run when activity is visible on screen. 

The onResume Method 

//  always  call  super 

public  void  onResume()  { 

 super.onResume(); 

 if  (myConnection  ==  null)  { 

//  init.resources myConnection  =  new  ExampleConnect(); 

myConnection.connect(); 

} 

} 



Mahmoud El-Gayyar / Mobile Development      9  

 When onStop is called, your activity is no longer 

visible on the screen: 

 User chose another app from Recent Apps window. 

 User starts a different activity in your app. 

 User receives a phone call while in your app. 

 Your app might still be running, but that activity is not. 

 onPause is always called before onStop. 

 onStop performs heavy-duty shutdown tasks like writing 

to a database. 

The onStop Method 

//  always  call  super 

public  void  onStop()  { 

 super.onStop(); 

 ... 

} 



Mahmoud El-Gayyar / Mobile Development      10  

 onStart is called every time the activity begins 

 onRestart is called when activity was stopped but is 

started again later (all but the first start). 

 Not as commonly used; favor onResume. 

 Re-open any resources that onStop closed 

The onStart/onRestart Methods 

//  always  call  super 
 
 
 
 
 
 
 
 

//  always  call  super 

public  void  onStart()  { 

 super.onStart(); 

 ... 

} 

public  void  onRestart()  { 

 super.onRestart(); 

 ... 

} 



Mahmoud El-Gayyar / Mobile Development      11  

 When onDestroy is called, your entire app is being 

shut down and unloaded from memory. 

 Unpredictable exactly when/if it will be called. 

 Can be called whenever the system wants to reclaim the 

memory used by your app. 

 Generally favor onPause or onStop because they are 

called in a predictable and timely manner. 

The onDestroy Method 

//  always  call  super 

public  void  onDestroy()  { 

 super.onDestroy(); 

 ... 

} 



Mahmoud El-Gayyar / Mobile Development      12  

 Use the LogCat system for logging messages when your app 

 analogous to System.out.println debugging for Android apps 

 appears in the LogCat console in Android Studio 

Testing Activity States 

public  void  onStart()  { 

 super.onStart(); 

 Log.v("testing",  "onStart  was  called!"); 

} 



Mahmoud El-Gayyar / Mobile Development      13  

Log Methods 

Method Description 

Log.d("tag","message"); Debug message (for debugging) 

Log.e("tag","message"); Error message(fatal error) 

Log.i("tag","message"); Info message 

Log.v("tag","message"); Verbose message(rarely shown) 

Log.w("tag","message"); Warning message(non-fatal error) 

Log.wtf("tag",exception); Log stack trace of an exception 

● Each method can also accept an optional exception argument: 

 try  {  someCode();  } 

 catch  (Exception  ex)  { 

  Log.e("error4",  "something  went  wrong",  ex); 

 } 


