
Mobile Development
Lecture 6: The Activity Lifecycle

Mahmoud El-Gayyar
elgayyar@ci.suez.edu.eg

Elgayyar.weebly.com

Mahmoud El-Gayyar / Mobile Development 2

 storage: Your device has apps and files installed and

stored on its internal disk, SD card, etc.

 Settings Storage

 memory: Some subset of apps might be currently loaded

into the device's RAM and are either running or ready to

be run.

 When the user loads an app, it is loaded from storage into

memory.

 When the user exits an app, it might be cleared from

memory, or might remain in memory so you can go back to it

later.

 See which apps are in memory:

 Settings Apps Running

Apps, Memory, and Storage

Mahmoud El-Gayyar / Mobile Development 3

 An activity can be thought of as being in one of several states:

 starting: In process of loading up, but not fully loaded.

 running: Done loading and now visible on the screen.

 paused: Partially obscured or out of focus, but not shut down.

 stopped: No longer active, but still in the device's active memory.

 destroyed: Shut down and no longer currently loaded in memory.

 Transitions between these states are represented by events that

you can listen to in your activity code.

 onCreate, onPause, onResume, onStop, onDestroy, ...

Activity State

Mahmoud El-Gayyar / Mobile Development 4

Activity Lifecycle 1

Mahmoud El-Gayyar / Mobile Development 5

Activity Lifecycle 2

Mahmoud El-Gayyar / Mobile Development 6

 In onCreate, you create and set up the

activity object, load any static resources like

images, layouts, set up menus etc.

 after this, the Activity object exists

 think of this as the "constructor" of the activity

The onCreate Method

public class FooActivity extends Activity {

 ...

 public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState); // always call super

setContentView(R.layout.activity_foo); // set up layout

any other initialization code; // anything else you need

}

}

Mahmoud El-Gayyar / Mobile Development 7

 When onPause is called, your activity is still

partially visible.

 May be temporary, or on way to termination.

 Stop animations or other actions that consume CPU.

 Commit unsaved changes (e.g. draft email).

 Release system resources that affect battery life.

The onPause Method

// always call super

// release resources

public void onPause() {

 super.onPause();

 if (myConnection != null) {

 myConnection.close();

 myConnection = null;

 }

}

Mahmoud El-Gayyar / Mobile Development 8

 When onResume is called, your activity is coming out

of the Paused state and into the Running state again.

 Also called when activity is first created/loaded!

 Initialize resources that you will release in onPause.

 Start/resume animations or other ongoing actions that

should only run when activity is visible on screen.

The onResume Method

// always call super

public void onResume() {

 super.onResume();

 if (myConnection == null) {

// init.resources myConnection = new ExampleConnect();

myConnection.connect();

}

}

Mahmoud El-Gayyar / Mobile Development 9

 When onStop is called, your activity is no longer

visible on the screen:

 User chose another app from Recent Apps window.

 User starts a different activity in your app.

 User receives a phone call while in your app.

 Your app might still be running, but that activity is not.

 onPause is always called before onStop.

 onStop performs heavy-duty shutdown tasks like writing

to a database.

The onStop Method

// always call super

public void onStop() {

 super.onStop();

 ...

}

Mahmoud El-Gayyar / Mobile Development 10

 onStart is called every time the activity begins

 onRestart is called when activity was stopped but is

started again later (all but the first start).

 Not as commonly used; favor onResume.

 Re-open any resources that onStop closed

The onStart/onRestart Methods

// always call super

// always call super

public void onStart() {

 super.onStart();

 ...

}

public void onRestart() {

 super.onRestart();

 ...

}

Mahmoud El-Gayyar / Mobile Development 11

 When onDestroy is called, your entire app is being

shut down and unloaded from memory.

 Unpredictable exactly when/if it will be called.

 Can be called whenever the system wants to reclaim the

memory used by your app.

 Generally favor onPause or onStop because they are

called in a predictable and timely manner.

The onDestroy Method

// always call super

public void onDestroy() {

 super.onDestroy();

 ...

}

Mahmoud El-Gayyar / Mobile Development 12

 Use the LogCat system for logging messages when your app

 analogous to System.out.println debugging for Android apps

 appears in the LogCat console in Android Studio

Testing Activity States

public void onStart() {

 super.onStart();

 Log.v("testing", "onStart was called!");

}

Mahmoud El-Gayyar / Mobile Development 13

Log Methods

Method Description

Log.d("tag","message"); Debug message (for debugging)

Log.e("tag","message"); Error message(fatal error)

Log.i("tag","message"); Info message

Log.v("tag","message"); Verbose message(rarely shown)

Log.w("tag","message"); Warning message(non-fatal error)

Log.wtf("tag",exception); Log stack trace of an exception

● Each method can also accept an optional exception argument:

 try { someCode(); }

 catch (Exception ex) {

 Log.e("error4", "something went wrong", ex);

 }

