
Introduction to Programming

Lecture 6: Functions & Program Structure

Mahmoud El-Gayyar
elgayyar@ci.suez.edu.eg

Mahmoud El-Gayyar / Advanced Programming 2

 Arrays





Initialization

Multi-dimensional arrays

 More Operators







Assignment operators

Increment and decrement operators

Order of evaluation

Review of Chapter 5

Mahmoud El-Gayyar / Advanced Programming 3

 Functions Basics

 Function Prototypes





Void (Non Value-Returning) Functions

Variables Visibility and Lifetime





Default Initialization

Examples

Outline

Mahmoud El-Gayyar / Advanced Programming 4

 Functions Basics

 Function Prototypes





Void (Non Value-Returning) Functions

Variables Visibility and Lifetime





Default Initialization

Examples

Outline

Mahmoud El-Gayyar / Advanced Programming 5

What is a Function?

Function Inputs Outputs

Mahmoud El-Gayyar / Advanced Programming 6













It performs some well-defined task (Useful to the program)

It might be useful to other programs as well

The rest of the program doesn't have to know the details of

how the function is implemented

Avoid to repeat code in the program (simpler code)

Can be re-written (improved) while the rest of the program is

not modified.

 What is a Function?

Code within a function should has these properties:

Mahmoud El-Gayyar / Advanced Programming 7











Name

Parameters (inputs)

Body (set of instructions: sequential, loop, conditional)

Return type (the type of its output)



 Function Basics

A function consists of:

Example: Multiply an int by two function,

 int multbytwo(int x){
 int retval;
 retval = x * 2;
 return retval;
 }

Mahmoud El-Gayyar / Advanced Programming 8



 But how can we call our defined function?!

 For this we will see a full program using the mltbytwo

function.

 Function Basics

The previous function can be written in a simplified

format: (return can be used to return an expression)

 int multbytwo(int x){
 return x * 2;
 }

9

 Functions: Full Example

#include <stdio.h>

//function prototype

//function call

int multbytwo(int);

void main(){
 int i, j;
 i = 3;
 j = multbytwo(i);
 printf("%d\n", j);

}

/*----------Function multbytwo------------*/
int multbytwo(int x){
 return x * 2;
}

 Mahmoud El-Gayyar / Advanced Programming

Mahmoud El-Gayyar / Advanced Programming 10









ensure that the compiler can generate correct code for calling

the functions

allowing the compiler to catch certain mistakes you might make

however, prototypes are optional. (Define functions before main)

 Actually header (.h) files contains only functions

prototypes while code is available in dynamic libraries

(.dll files)

 Function Prototypes

prototypes help to

Mahmoud El-Gayyar / Advanced Programming 11

 Functions Basics

 Function Prototypes





Void (Non Value-Returning) Functions

Variables Visibility and Lifetime





Default Initialization

Examples

Outline

Mahmoud El-Gayyar / Advanced Programming 12







 Void Functions

Void functions are created and used just like value-

returning functions except they do not return a value

after the function executes.

Example: Write a function to print “Hello” for n times

on the screen.

 void printHello(int num){
 for(int i=0;i<num;i++)
 printf(“Hello\n”);
 }

How to call?!

 When passing an array to a function, we only need to specify the array
name

 The following example is invalid

void f(int x[20]){

 …

}

void main(){

 int y[20];

 f(y[0]); //invalid, type mismatch

}

Parameters Passing: arrays

Parameters Passing: arrays

void f(int a[3]){

 cout << a[0] <<endl; //1 is printed

 a[0]=10;

}

void main (void) {

 int a[3]={1,2,5}; //an array with 3 elements

 f(a); //calling f() with array a

 cout << a[0] <<endl; //10 is printed

}

The size of array is optional.
void f(int a[])

if the content of a[i] is modified in the
function, the modification will persist even
after the function returns (Call by
reference)

Only need to input the array name!

Parameters Passing: arrays

Write a C function to count n numbers
from an array?

Mahmoud El-Gayyar / Advanced Programming 13

 Functions Basics

 Function Prototypes





Void (Non Value-Returning) Functions

Variables Visibility and Lifetime





Default Initialization

Examples

Outline

Mahmoud El-Gayyar / Advanced Programming 14





local variables  Visible only within the block





Function blocks

for/if/switch blocks

 a variable declared outside of any function is a global

variable, and it is potentially visible anywhere within the

program.

 Variable Visibility

The visibility of a variable determines how much of the

rest of the program can access that variable.

A variable declared within a block (braces { }) are called

Mahmoud El-Gayyar / Advanced Programming 15







 Variable Life Time

Automatic duration: start at the beginning of the block

and they (and their values) disappear at the end of the

block (e.g. local variables).

 Static duration: they last, and the values stored in them

persist (for sure can be changed), for as long as the

program does. (e.g. global variables)

static keyword can be used to switch the local variable

duration into a static one.

Mahmoud El-Gayyar / Advanced Programming 16

Example: Variable Life Time

void staticExample();
int z=2;
void main(){
 cout<<z++<<endl;
 staticExample();
 staticExample();
 staticExample();
}

void staticExample(){
 int x=0;
 static int y=0;
 cout<< x++ << y++<<endl;
 cout<<z++<<endl;
}

2
0 0
3
0 1
4
0 2
5

Mahmoud El-Gayyar / Advanced Programming 17





 Variable Initialization

If you do not explicitly initialize them, automatic-

duration variables (that is, local, non-static ones) are not

guaranteed to have any particular initial value (garbage)

Static-duration variables (global and static local), on the

other hand, are guaranteed to be initialized to 0 (zero) if

you do not use an explicit initializer in the definition.

Mahmoud El-Gayyar / Advanced Programming 18

 Example 1

int globalvar = 1;

int anotherglobalvar;

f(){

int localvar;

int localvar2 = 2;

static int persistentvar;

}

Mahmoud El-Gayyar / Advanced Programming 19

 Example 2

 Write a function to compute the factorial of a number, and use it to print the factorials of the

 numbers 1-7.

int fact (int n);

int main(){
 for(int i=1; i<=7 ; i++)
 printf("factorial of %d equals %d \n", i, fact(i));

 return 0;
}

int fact (int n){
 int factorial=1;

 for(int i=n; i>1 ; i--)
 factorial=factorial*i;

 return factorial;
}

Mahmoud El-Gayyar / Advanced Programming 20







 Summary

How to write functions

Don’t forget your prototype

Difference between local and global variables

