
Introduction to Programming

Lecture 5: More about Declarations &
Operators

Mahmoud El-Gayyar
elgayyar@ci.suez.edu.eg

Mahmoud El-Gayyar / Advanced Programming 2











if Statement

Nested if

switch Statement





Boolean Expressions

Loops







while Loop

for Loop

Continue & Break

 Review of Chapter 4

Expression Statement

Conditional

Mahmoud El-Gayyar / Advanced Programming 3

 Arrays





Initialization

Multi-dimensional arrays

 More Operators







Assignment operators

Increment and decrement operators

Order of evaluation

Outline

Mahmoud El-Gayyar / Advanced Programming 4

 Arrays





Initialization

Multi-dimensional arrays

 More Operators







Assignment operators

Increment and decrement operators

Order of evaluation

Outline

Mahmoud El-Gayyar / Advanced Programming 5



 Trivial solution: define 1000 float variables, salaryEmployee1,



salaryEmployee2, ...etc.

This will be a big miss!!

 Arrays in programming languages allow you to solve

this problem by storing multiple values with one

variable name:

 But all values must be of the same type

 Arrays

Suppose you would like to store the salary of 1000 employees?!

Mahmoud El-Gayyar / Advanced Programming 6











 Array Declaration

To declare an array of several elements, you need:

Type of elements

Name of the array variable

Size (number of elements)

 int a[10];

Take care index is always start with zero and end with

length-1

Index / subscript

Mahmoud El-Gayyar / Advanced Programming 7











a[0]= 10;

a[1]=-5;

a[2]=a[0]+a[1];

a[10]=10;

 Out of index (memroy error)

 Arrays: Element Access

You can access array elements throgh the index / subscript

10

 10

 10

 -5

-5 5

Mahmoud El-Gayyar / Advanced Programming 8





 What if you would like to copy array a into array b?





b=a;

Again use loops?!

 Arrays: Element Access

What if you would like to inialize all elements to 0?!!

 int i;
 for (i=0 ; i < 10 ; i=i+1){
 a[i]=0;
 }

a=0;



 Arrays: Intialization

You can inialize arrays while declaration as in normal variables:

 int a[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

int a[] = {10, 11, 12, 13, 14};

int a[10] = {0, 1, 2, 3, 4, 5, 6};

int a[100] = {0};

char s1[7] = "Hello,";

char s2[10] = "there,";

char s3[] = "world!";

 Mahmoud El-Gayyar / Advanced Programming

//here array size is 5

//elements 7,8,9 are zeros

// don’t forget the null (0)

//?

//array size?!

 9

Mahmoud El-Gayyar / Advanced Programming 10









Use rand() from stdlib.h that returns random integer (up to 32767)

You need to scale it to a value between 1 and 6: use %6 +1

 rand() % 6 + 1; should be always between 1 and 6



 Arrays: Full Example

Suppose you would like to roll a pair of dice 100 times and see

how often each roll (2 – 12) comes up.

How to roll a dice?

 To get the outcome of 100 rolls, simply use a for loop
int i, outcome;

for (i=0 ; i < 100 ; i=i+1){
 d1=rand() % 6 + 1;
 d2=rand() % 6 + 1;
 outcome=d1+d2;
}

11

 Arrays: Full Example

#include <stdio.h>

#include <stdlib.h>

int main(){

 int i, d1, d2;
 int a[13]={0};

/* for rand()*/

/* uses [2..12] */

 for(i = 0; i < 100; i = i + 1){
 d1 = rand() % 6 + 1;
 d2 = rand() % 6 + 1;
 a[d1 + d2] = a[d1 + d2] + 1;
 }

 for(i = 2; i <= 12; i = i + 1)

 printf("%d: %d\n", i, a[i]);

 return 0;

 }

Mahmoud El-Gayyar / Advanced Programming

Mahmoud El-Gayyar / Advanced Programming 12







a is a matrix with 3 rows and 4 columns

You will need two loops to handle all elements of a

matrix

 Multi-dimensional Arrays

The declaration of an array of arrays (matrix) looks like this:

 int a [3][4];

Mahmoud El-Gayyar / Advanced Programming 13





 Multi-dimensional Arrays

Example to set all cells in matrix a to 1:

 int i, j;
 int a [3][4];
 for(i=0 ; i < 3 ; i= i+1)
 for(j=0 ; j < 3 ; j= i+1)
 a[i][j]=1;

To print all elements on the screen in a matrix form:

 for(i = 0; i < 3; i = i + 1){

 for(j = 0; j < 4; j = j + 1)
 printf("%d\t", a2[i][j]);

 printf("\n");
 }

Mahmoud El-Gayyar / Advanced Programming 14





 Multi-dimensional Arrays: Intialization

Multidimensional arrays may be initialized by specifying

bracketed values for each row:

 int a[3][4] = {

/*
/*
/*

initializers for row indexed by 0 */
initializers for row indexed by 1 */
initializers for row indexed by 2 */

 {0, 1, 2, 3} ,
 {4, 5, 6, 7} ,
 {8, 9, 10, 11}
};

The nested braces, which indicate the intended row, are

optional. The following initialization is equivalent to

previous example:

 int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};

Mahmoud El-Gayyar / Advanced Programming 15

 Arrays





Initialization

Multi-dimensional arrays

 More Operators







Assignment operators

Increment and decrement operators

Order of evaluation

Outline

Mahmoud El-Gayyar / Advanced Programming 16

 Assignment Operators

 i=i+1;

 a[i+j+2*k] = a[i+j+2*k] + 1;

a[i+j+2*k] = a[i+j+2+k] + 1;

 i+=1;

 a[i+j+2*k] += 1;

k *= n + 1

 a[i] /= b



 

k=k*(n+1)

 a[i] = a[i] / b

//i=2, k=4

Mahmoud El-Gayyar / Advanced Programming 17

Increment & Decrement Operators

++i
--i

i++
i--

 i=i+1;
 i=i-1;

 i=i+1;

 i=i-1;

Prefix

Postfix

But take care, they are different!!!

i=1;
k = 2 * ++i;

i=1;
k = 2 * i++;

//i=2, k=4

//i=2, k=2

Mahmoud El-Gayyar / Advanced Programming 18

Increment & Decrement Operators

 int i=1;

 printf("i is %d\n", i++);
 printf("i is %d\n", ++i);

 1
 3

Mahmoud El-Gayyar / Advanced Programming 19



 We call this undefined expression, you have to avoid such type of

expressions.

 Order of Evaluation

Expressions now are more complicated

//? a[i++] = b[j++];

a[i++] = b[i++];

Mahmoud El-Gayyar / Advanced Programming 20







 Order of Evaluation

As another example, if you would like to set a[i]=i:

 int i, a[10];
 i = 0;
 while(i < 10)
 a[i] = i++;

We may end up with a[1]=0, a[2]=1,…

A better form is to use a for loop in this case:

 for(i = 0; i < 10; i++)
 a[i] = i;

Mahmoud El-Gayyar / Advanced Programming 21









In case of AND: if the first part is false, it will not evaluate the second one

In case of OR: if the first part is true, it will not evaluate the second one

 Problems with logical AND / OR

The main problem is that conditions accept arithmetic expressions

 if(x > 0 && x++ < 10){
 }
 if(x > 0 || x++ < 10){
 }

The main problem here is that C first evaluates the first part of the

compound logical expression.

Mahmoud El-Gayyar / Advanced Programming 22







Arrays

Matrices

Other Operators





Assignment

Increment / decrement

 Don’t use ambiguous expressions

Summary

