
Advanced Programming - JAVA
Lecture 4

OOP Concepts in JAVA
PART II

Mahmoud El-Gayyar
elgayyar@ci.suez.edu.eg

Mahmoud El-Gayyar / Advanced Programming 3

 Ad hoc-Polymorphism

 Method overloading

 Sub-type Polymorphism









Method overriding

Dynamic binding

Object methods

Interfaces

 Paramedic Polymorphism

 Java Generics

Outline

Mahmoud El-Gayyar / Advanced Programming 4

 Ad hoc-Polymorphism

 Method overloading

 Sub-type Polymorphism









Method overriding

Dynamic binding

Object methods

Interfaces

 Paramedic Polymorphism

 Java Generics

Outline

Mahmoud El-Gayyar / Advanced Programming 5



 In computer science, polymorphism is the idea of allowing the

same code to be used with different types, resulting in more

general and abstract implementations.

 Types of polymorphism







Ad-hoc polymorphism (Method Overloading)

Subtype (inclusion) polymorphism(Method Overriding)

Parametric polymorphism (Java Generics)

 Polymorphism

Idea of polymorphism

Mahmoud El-Gayyar / Advanced Programming 6







In this case different methods within the same share the

same name but have different method signatures (name +

parameters)

public static float max(float a, float b)

public static float max(float a, float b, float c)

public static int max(int a, int b)

When a method is called, the call signature is matched to the

correct method version.

 Ad-hoc Polymorphism

This is called method overloading

Mahmoud El-Gayyar / Advanced Programming 7



 “Widening” means that values of “smaller” types are cast into

values of “larger” types Ex: int to long; int to float ; float to

double

 Note: This type of polymorphism is not necessarily

object-oriented – can be done in non-object-oriented

languages

 Ad-hoc Polymorphism

If an exact signature match is not possible, the one that

is closest via “widening”

Mahmoud El-Gayyar / Advanced Programming 8



static public void method1(Integer integer) ;

 static public void method1(String string);

method1(null); //compiler error

 Ad-hoc Polymorphism

If two or more versions of the method are possible with

the same amount of “widening”, the call is ambiguous,

and a compilationerror will result

Mahmoud El-Gayyar / Advanced Programming 9

 Ad hoc-Polymorphism

 Method overloading

 Sub-typePolymorphism









Method overriding

Dynamic binding

Object methods

Java Interfaces

 Paramedic Polymorphism

 Java Generics

Outline

Mahmoud El-Gayyar / Advanced Programming 10





1)





A method defined in a superclass is redefined in a subclass

with an identical method signature

Since the signatures are identical, rather than overloading

the method, it is instead overriding the method

 For subclass objects, the definition in the subclass replaces the

version in the superclass

 Sub-type Polymorphism

Sometimes called “true polymorphism”

Consists basically of two ideas:

Method overriding

Mahmoud El-Gayyar / Advanced Programming 11

2)





 



The code for a method call is associated during run-time

The actual method executed is determined by the type of the

object, not the type of the reference

Allows superclass and subclass objects to be accessed in a

regular, consistentway

This is very useful if we want access collections of mixed data

types (ex: draw different graphical objects using the same

draw() method call for each)

 Sub-type Polymorphism

Dynamic (or late) binding

Mahmoud El-Gayyar / Advanced Programming 12

 Dynamic/Late Binding

Animal [] A = new Animal[3];

A[0] = new Bird();

A[1] = new Cat();

A[2] = new Fish();

for (int i = 0; i < A.length; i++)

 A[i].move();

move()

move()

move()
• References are all the same,

 but objects are not

• Method invoked is that

associated with the OBJECT,

NOT with the reference

Mahmoud El-Gayyar / Advanced Programming 13







Superclass references can always be used to access subclass

objects, but NOT vice versa

Animal A = new Bird(); // this is ok

Bird B = new Animal(); // this is an ERROR

Given a reference R of class C, only methods and instance variables

that are defined (initially) in class C or ABOVE in the class hierarchy

can be accessedthroughR

 Object, Method and Instance Variable Access

When mixing objects of difference classes, some access rules are

important to know:

Mahmoud El-Gayyar / Advanced Programming 14



 The above is NOT legal, the method is not visible from the reference’s

 point of view (A is an Animal reference so it can only “see” the data and

 methods defined in class Animal)

System.out.println(((Fish) A).getWaterType());

 This is ok, since we have now cast the reference to the Fish type

 Object, Method and Instance Variable Access

Example: Suppose class Fish contains a new instance variable

waterType and a new method getWaterType()

 Fish F = new Fish();

 Animal A = new Fish();

 System.out.println(F.getWaterType()); // ok

 System.out.println(A.getWaterType()); //error

Mahmoud El-Gayyar / Advanced Programming 15









public String toString()

public boolean equals(Object obj)





Each of these forms a contract to which all objects must adhere

Object has a default implementation for each of these methods





Unless our classes override them, they inherit this behavior

May or may not be what our classes require

 Object Methods

Every class automatically inherits from Object

Class Object defines a set of methods that every class inherits

Mahmoud El-Gayyar / Advanced Programming 16







 Name of the class, ‘@’ character, followed by the HashCode for

the object

 toString()

toString() returns a string representation of the object

RULE: All classes should override this method

Default implementationfrom the Object class constructs

a string like:

ClassName@30E50DA3

Mahmoud El-Gayyar / Advanced Programming 17



 Ex. string1.equals(“done”)

 Defaultimplementationfrom the Object class is

equivalent to ‘==‘





For any two references, x and y:

x.equals(y) is true if and only if x == y

The references must point to the same object for equals() to

return true

 equals()

Indicates whether two objects are logically equal to each

other

Mahmoud El-Gayyar / Advanced Programming 19









Object o could be null, need to check

if(o == null) return false;

o may be not an instance of MyClass (Exception)

 Contract of equals()

Consider the following equals() method

public boolean equals(Object o)

{

 MyClass obj= (MyClass) o;

 return (name.equals(obj.name);

}

What’s wrong with this?

Mahmoud El-Gayyar / Advanced Programming 20



 Template for equals()

For any class, the general form of the equals() method should be:

public class MyClass{

 public boolean equals(Object o){

 if(o == null) return false;

 if(o instanceof MyClass){

 MyClass my = (MyClass) o;

 //perform comparison

 }

 return false;

 }

}

Mahmoud El-Gayyar / Advanced Programming 24









A new class can be a subclass of only one parent (super) class

However, it is sometimes useful to be able to access an object

through more than one superclass reference

We may want to identify an object in multiple ways:




One based on its inherent nature (i.e. its inheritance chain)
– Ex: A Person

Others based on what it is capable of doing

– Ex: An athlete

– Ex: a pilot

 Interfaces

Java allows only single inheritance

Mahmoud El-Gayyar / Advanced Programming 25









However, no method bodies are given – just the headers

Static constants are allowed, but no instance variables are allowed

No static methods are allowed





Any Java class (no matter what its inheritance) can implement

an interface by implementing the methods defined in it

A given class can implement any number of interfaces

 Interfaces

A Java interface is a named set of methods

26

 Any Java class can implement Laughable by

implementing the method laugh()

 Any Java class can implement Booable by

implementing the method boo()

 Mahmoud El-Gayyar / Advanced Programming

 Example: Interfaces

public interface Laughable{

 public void laugh();

}

public interface Booable{

 public void boo();

}

Mahmoud El-Gayyar / Advanced Programming 27

 Example: Interfaces

public class Comedian implements Laughable, Booable

{

 // various methods here (constructor, etc.)

 public void laugh()

 {

 System.out.println(“Ha ha ha”);

 }

 public void boo()

 {

 System.out.println(“You stink!”);

 }

}







Note that the same method name (ex: laugh() below) may in fact

represent different code segments in different classes

Also, only the interface methods are accessible through the

interface reference

Laughable L1, L2, L3;
L1 = new Comedian();
L2 = new SitCom();

L3 = new Clown();

L1.laugh(); L2.laugh();

 Mahmoud El-Gayyar / Advanced Programming

 // implements Laughable
 // implements Laughable

 // implements Laughable

L3.laugh();

 28

 Interface Variable

An interface variable can be used to reference any object

that implements that interface

Mahmoud El-Gayyar / Advanced Programming 29







An interface variable can be used to reference any object that implements

that interface

However, only the interface methods are accessible through the interface

reference

 Recall our previous example:

Laughable [] funny = new Laughable[3];
funny[0] = new Comedian();
funny[1] = new SitCom();
funny[2] = new Clown();
for (int i = 0; i < funny.length; i++)
 funny[i].laugh();

 Interfaces
Polymorphism and Dynamic Binding also apply to interfaces

Mahmoud El-Gayyar / Advanced Programming 30



 Sometimes we are only concerned about a given property or behavior of a class

 The other attributes and methods still exist, but we don't care about them for what we

want to do

 For example: Sorting







We can sort a lot of different types of objects

– Various numbers

– People based on their names alphabetically

– Movies based on their titles

– Employees based on their salaries

Each of these classes can be very different

However,something about them all allows them to be sorted

 "Generic" Operations

How does it benefit us to be able to access objects through interfaces?

Mahmoud El-Gayyar / Advanced Programming 31



 So we need some method that invokes this comparison

 In order to sort them, we don't need to know or access anything

else about any of the classes

 Thus, if they all implement an interface that defines the comparison, we can

sort them all with a single method that is defined in terms of that interface

 Huh?

 Perhaps it will make more sense if we develop an example…but first we will

need some background!

 “Generic” Operations

They all can be compared to each other

Mahmoud El-Gayyar / Advanced Programming 32









It contains one method:

 int compareTo(Object r);

Returns a negative number if the current object is less than r, 0 if the current

object equals r and a positive number if the current object is greater than r

Not has restrictive as equals() – can throw ClassCastException

 Consider what we need to know to sort data:

 is A[i] less than, equal to or greater than A[j]

 Thus, we can sort Comparable data without knowing anything

else about it  very nice !!

 Comparable Interface

Consider the Comparable interface:

Mahmoud El-Gayyar / Advanced Programming 33







We know we can compare them because they implement

Comparable

We don’t know (or need to know) anything else about them

 Thus, a single sort method will work for an array of any

Comparable class





Let’s write it now, altering the code we already know from our

simple sort method

See example

 Using Comparable

Think of the objects we want to sort as “black boxes”

http://www.mkyong.com/java/java-object-sorting-example-comparable-and-comparator/
http://www.mkyong.com/java/java-object-sorting-example-comparable-and-comparator/

Mahmoud El-Gayyar / Advanced Programming 34

 Ad hoc-Polymorphism

 Method overloading

 Sub-typePolymorphism









Method overriding

Dynamic binding

Object methods

Java Interfaces

 Paramedic Polymorphism

 Java Generics

Outline

Mahmoud El-Gayyar / Advanced Programming 35

 We will know later that





Each collection or Iterator returns an Object (to work for any kind)

Requires us to cast the reference to an instance that we need

List list = new LinkedList();

list.add(“Some Pig”);

String s = (String) list.get(0); //The cast can be annoying

 The list may also not really contain Strings

 We’d like to force the List to only contain specific types





We wouldn’t need the cast

We could be sure what type of objects the List contained

 This is where “Generics” works well

Generics

Mahmoud El-Gayyar / Advanced Programming 36









Declares a “List of Strings” instead of a simple List

Compiler can now ensure only Strings are added to this

particular list

We no longer need the casts

 Generics

We “parameterize” the instance of our List with the type of object

we expect it to contain using the <> syntax

List<String> list = new LinkedList<String>();

list.add(“Some Pig”);

String s = list.get(0);

Mahmoud El-Gayyar / Advanced Programming 37

Integer i = (Integer)v.get(0); // Run time error

List<String> v = new ArrayList<String>();

v.add("test");

Integer i = v.get(0); // (type error) Compile time error

 Generics - Motivation
List v = new ArrayList();

v.add("test");

Mahmoud El-Gayyar / Advanced Programming 38





 Called Formal Type Parameters

 The <E> declares that a type must be used when an instance is

created

 The type is then used in place of anywhere the ‘E’ is used in the class

definition

 e.g. add(E x);

 Writing a Generic Class
Use the <> syntax in the class definition

public interface List<E>{

 void add(E x);

}

This is similar to declaring parameters in a method

Mahmoud El-Gayyar / Advanced Programming 39

public class Entry<K, V> {

 private K key;

 private V value;

 public Entry(K k, V v) {

 key = k; value = v;

}

public K getKey() {

 return key;

}

public V getValue() {

 return value;

}

public String toString() {

 return "(" + key + ", " + value + ")";

 }

}

Example: a Generic Class

Entry<String, String> grade440 =

new Entry<String, String>("mike", "A");

Entry<String, Integer> marks440 =

new Entry<String, Integer>("mike", 100);

Mahmoud El-Gayyar / Advanced Programming 40

 Ad hoc-Polymorphism

 Method overloading

 Sub-type Polymorphism









Method overriding

Dynamic binding

Object methods

Interfaces

 Paramedic Polymorphism

 Java Generics

Summary

